公告版位

目前日期文章:20070720 (28)

瀏覽方式: 標題列表 簡短摘要
Bewise Inc. www.tool-tool.com Reference source from the internet.

위키백과 ― 우리 모두의 백과사전.

Jump to: navigation, 찾기
14 알루미늄규소
C

Si

Ge
일반적 성질
이름, 기호, 번호 규소, Si, 14
화학 계열 준금속
, 주기, 구역 14, 3, p
모양 암회색, 푸르스름한 색조
원자 질량 28.0855(3) g/mol
전자 배열 [Ne] 3s2 3p2
껍질전자 2, 8, 4
물리적 성질
상태 고체
밀도 (대략 실온) 2.33 g/cm³
액체 밀도 (녹는점) 2.57 g/cm³
녹는점 1687 K
(1414 °C, 2577 °F)
끓는점 3538 K
(3265 °C, 5909 °F)
융해열 50.21 kJ/mol
기화열 359 kJ/mol
열용량 (25 °C) 19.789 J/(mol·K)
증기압
압력(Pa) 1 10 100 1 k 10 k 100 k
온도(K) 1908 2102 2339 2636 3021 3537
원자의 성질
결정 구조 면심입방구조
산화 상태 4
(양쪽성 산화물)
전기 음성도 1.90 (폴링 척도)
이온화 에너지
(더...)
1차: 786.5 kJ/mol
2차: 1577.1 kJ/mol
3차: 3231.6 kJ/mol
원자 반지름 110 pm
원자 반지름 (계산) 111 pm
공유 반지름 111 pm
반데발스 반지름 210 pm
그밖의 성질
자기적 질서 비자기성
열전도율 (300 K) 149 W/(m·K)
열팽창계수 (25 °C) 2.6 µm/(m·K)
음속 (막대) (20 °C) 2200 m/s
영률 47 GPa
부피 탄성 계수 100 GPa
모스 굳기 6.5
CAS 등록번호 7440-21-3
주요 동위 원소
본문: 규소 동위 원소
iso 존재비 반감기 DM DE (MeV) DP
28Si 92.23% 중성자 14개인 Si은 안정
29Si 4.67% 중성자 15개인 Si은 안정
30Si 3.1% 중성자 16개인 Si은 안정
32Si 합성 276년 β- 0.221 32P
참고 자료

규소(珪素)는 화학 원소로 기호는 Si, 원자 번호는 14이다. 4가 준금속으로 탄소보다는 반응성이 떨어진다. 지구지각에서 산소 다음으로 많은 원소로 전체 질량의 25.7%를 차지한다. 점토모래, 석영, 장석, 화강암 등의 형태로 산출되며, 주로 이산화 규소규산염 상태를 하고 있다. 대부분의 반도체의 주성분이며, 이산화 규소나 규산염의 형태로 유리, 세라믹, 시멘트 등의 주성분을 이루고 있다. 실리콘의 주성분이기도 하다.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end mills、Специальные режущие инструменты Пустотелое сверло ‘Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
14 jinmrmalumecancmusackycmu
C

Si

Ge
tolsteci
cmene, sinxa, namcu cancmu, Si, 14
selratni porsi xabjinkle


girzu, dikni, dikni girzu 14, 3, p
viska selsimlu blamangrusi sligu
teryratni 28.0855(3) g/mol
dutydikca kantu [Ne] 3s2 3p2
dutydikca spisa terfendi
nejni bo senta
2, 8, 4
rarna ckaji
ganzu tcini sligu
denmi to jibni kumke'o toi 2.33 g/cm³
selrunme 1687 K to 1414 °C toi
selfebvi 3538 K to 3265 °C toi
nalylikseltcini le ? K .e le ? MPa
runme kelvo nejni 50.21 kJ/mol
febvi kelvo nejni 359 kJ/mol
gacyda'e
selratyte'i
krilisu'a carkubyvaukubli
kijnentcini 4
jiljavyslami joi kijno
ratni mijbi'ikoimre 110 pm
vricite'i
makpoi nalmaksi
nengla greka'e to 300 K toi
149 mW m-1K-1
snasutra to le cinla garna
.e le 293 K toi
8433 m/s
teryratni selcmi
djuno

ni'o lo cancmu goi ko'a cu ratni li 14 li 28 pi 0855 fi'o sinxa la'o xy. Si xy. .ije le krili cancmu cu grusi gi'e jinminra sekai leka kycy. cu pi'irdu'i zenba le ka jinminra

[edit] citri

ni'o la'o fy. Antoine Lavoisier fy. cu sepfa'i fi ko'a de'i le 1787moi nanca

[edit] teryratni

ni'o le rarna sodna cu selcmima le ci stodi sodna teryratni no'u la'o xy. 28 xy. .e la'o xy. 29 xy. .e la'o xy. 30 xy. .i la'o xy. 32Si xy. cu ka'urdi'e fusra selbinxo laznavni

[edit] kanro joi javni steci

ni'o le terkungau .e le rokyka'agau cu cancmupu'e fepri bilma ri'a lenu ri cu rapyva'u le cancmu joi kijno pulce


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end mills、Специальные режущие инструменты Пустотелое сверло ‘Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

出典: フリー百科事典『ウィキペディア(Wikipedia)』

アルミニウム - ケイ素 - リン
C
Si
Ge

一般特性
名称, 記号, 番号 ケイ素, Si, 14
分類 半金属
, 周期, ブロック 14 (IVB), 3, p
密度, 硬度 2330 kg/m3, 6.5
うっすらと
青みがかった暗灰色
ケイ素
原子特性
原子量 28.0855 amu
原子半径 (計測値) 110 (111) pm
共有結合半径 111 pm
VDW半径 210 pm
電子配置 [Ne]3s2 3p2
電子殻 2, 8, 4
酸化数酸化物 4,2(両性酸化物
結晶構造 面心立方構造
物理特性
固体 (反磁性
融点 1687 K (1410 )
沸点 3173 K (2600 )
モル体積 12.06 ×10-3 m3/mol
気化熱 384.22 kJ/mol
融解熱 50.55 kJ/mol
蒸気圧 4.77 Pa (1683 K)
音の伝わる速さ データなし
その他
クラーク数 25.8 %
電気陰性度 1.90 (ポーリング)
比熱容量 700 J/(kg*K)
導電率 2.52 10-4/m Ω
熱伝導率 148 W/(m*K)
第1イオン化エネルギー 786.5 kJ/mol
第2イオン化エネルギー 1577.1 kJ/mol
第3イオン化エネルギー 3231.6 kJ/mol
第4イオン化エネルギー 4355.5 kJ/mol
第5イオン化エネルギー 16091 kJ/mol
第6イオン化エネルギー 19805 kJ/mol
第7イオン化エネルギー 23780 kJ/mol
第8イオン化エネルギー 29287 kJ/mol
第9イオン化エネルギー 33878 kJ/mol
第10イオン化エネルギー 38726 kJ/mol
(比較的)安定同位体
同位体 NA 半減期 DM DE MeV DP
28Si 92.23% 中性子14個で安定
29Si 4.67% 中性子15個で安定
30Si 3.1% 中性子16個で安定
32Si {syn} 276 β- 0.224 32P
注記がない限り国際単位系使用及び標準状態下。

ケイ素(珪素、硅素、シリコン、Silicon)は原子番号14の元素である。元素記号はSi地球に最も多く含まれる元素のひとつ。常温、常圧で安定な結晶構造は、ダイヤモンド構造。比重は 2.33、融点 1410 ℃(1420 ℃)、沸点は 2600 ℃(他に 2355 ℃、3280 ℃という実験値あり)。ダイヤモンド構造のケイ素は、1.12 eVバンドギャップ(実験値)をもつ半導体である。ボロンリンなどの不純物を微量添加させることにより、p型半導体n型半導体となり、電子工学上非常に重要な元素である。また、Si(111)基板はAFMSTMの標準試料としてよく用いられる。

周期表において、ケイ素は炭素のすぐ下にある同族の元素であるが、炭素において常温、常圧で安定なグラファイト構造は、安定な構造として存在できない。

ダイヤモンド構造でのケイ素はバンドギャップの存在する半導体であり非金属であるが、これに圧力(静水圧)を加えると、β錫構造に構造相転移する。このβ錫構造のケイ素は金属である。

現在、ケイ素は 99.9999999999999% (15N) まで純度を高められる。

[編集] 用途

[編集] 半導体

最も重要用途としては、四塩化ケイ素トリクロロシランなどから作られる高純度ケイ素半導体作成に用いられることが挙げられる。また、液晶ディスプレイTFT太陽電池にはアモルファスシリコンや多結晶シリコンなどが用いられる。砒化ガリウム窒化ガリウムなどの化合物半導体の基板にシリコンを用いれば大幅な低価格化が可能であり、様々な研究が進められている。

[編集] ケイ素含有合金

ほかにもまた製鉄材料として1トンあたり2キロ弱のケイ素が添加されるほか、ケイ素合金として製鉄の脱酸素剤に用いられる。そのほかに、ケイ素を混ぜた鋼板(ケイ素鋼板)は、うず電流による損失が少なくなるため、変圧器に使われている。アルミニウム工業の分野でもケイ素の合金が使われている。

[編集] ケイ素含有セラミックス類

ケイ素の酸化物(シリカ)を原料とするガラスは、その他で使われるほか、繊維状にして断熱材や吸音材としても用途がある。ゼオライトは、イオン交換体、吸着剤あるいは、有機化学工業における触媒ともなっている。シリカゲルとしては、非常に利用しやすい乾燥剤になる。

炭化ケイ素は、耐火材や抵抗体として使われたり、高いモース硬度 (9.5) を持つために、研磨剤として使われる。その他のケイ素化合物として、アルミン酸塩粘土に含まれ、陶器セメントレンガなどセラミックスと呼ばれる材料の主成分になっているほか、カルシウム化合物を除去する働きから、の精製に使われるなどしている。

[編集] ケイ酸塩・ケイ素樹脂

ケイ酸塩は、さまざまな形で地殻上に存在しており、天然に存在するケイ素化合物のほとんどすべてが二酸化ケイ素およびケイ酸塩である。工業的にも広く用いられ、ガラス、陶磁器など、枚挙に暇がない。 アスベストは、繊維状のケイ酸塩鉱物であり、その耐薬品性や耐火性から以前は建材などに広く用いられたが、人体への悪影響が問題になったため、使用量は激減している。日本ではアスベストによる健康被害が社会問題となり、労災認定や健康被害を受けた国民に対しての補償問題、また、依然として多く残るアスベストの撤去に対しての問題を抱える。

有機基を有するケイ素二次元および三次元酸化物はシリコーンと呼ばれる。このものは、優れた耐熱性、耐薬品性、低い毒性などの有用な性質を示し、油状のものはワックス、熱媒体、消泡剤などに用いられる。三次元シリコーンはゴム弾性を示し、ゴム状のものはホースやチューブ、樹脂状のものは塗料絶縁材、接着剤など各種の用途に利用される。

[編集] 製法

[編集] 原料

主原料はSiO2から成る珪石珪砂で ある。日本国内の埋蔵量は2億トンあるとされるが、アルミと同様、酸化物から還元するには大量の電力を必要とするため、金属シリコンの状態になってから輸 入するのが一般的である。電力の安い国が金属シリコンの供給源となるため、これまで中国、ブラジル、ロシア、南アフリカ、ノルウェーなどが主要な供給国で あったが、近年はオーストラリアマレーシアベトナムなども注目されているという。

[編集] 精製

金属グレード(MG)シリコン
ケイ素の単体はカーボン電極を使用したアーク炉を用いて、二酸化ケイ素を還元して得る。この際、精製されたケイ素は純度99%程度のものである。
SiO2 + C → Si + CO2
SiO2 + 2C → Si + 2CO
高純度ポリシリコン
さらに純度を高めるには、塩素と反応させ四塩化ケイ素とし(ガス化)、これを蒸留して純度の高い製品を得る。
Si + Cl2 → SiCl4
SiCl4 + 2 H2 → Si + 4 HCl
半導体グレード(SEG)シリコン
集積回路など半導体素子に使用する超高純度のケイ素(純度11N以上)は、上記の高純度シリコンからさらにFZ(フローティングゾーン)法などのゾーンメルティングや Cz(チョクラルスキー)法などの単結晶成長法による析出工程を経ることで製造される。ゾーンメルト法では融解帯に不純物が濃縮する過程を繰り返すことで 高純度のケイ素を得る。Cz 法においては偏析を利用して高純度化するため、原料であるポリシリコン(多結晶珪素)には非常に純度の高いものが要求される。半導体に利用するには基本的 に結晶欠陥(転位)のない単結晶が必要なので、FZ 法においても Cz 法においても単結晶を回転させながら一旦細くし、転位を外に追い出した段階で結晶の径を大きくすることにより所定の大きさの結晶を得る。FZ 法は大口径化に向かないため、産業用に使用されているシリコンウェーハの大部分は Cz 法によって製造されている。現在製品化されているシリコンウェーハの径は直径 300 mm までである。
太陽電池グレード(SOG)シリコン
太陽電池にはSEGグレードほどの超高純度は必要なく、7N程度の純度で済み、また多結晶でも良い。このため上記の単結晶シリコンインゴットの端材などが原料に利用されてきたが、需要の増大に伴い、専用の太陽電池グレード(ソーラーグレード)シリコンの生産法が開発されている。手順としては
水ガラス化法:珪石(SiO2)にソーダ灰を粉砕・混合し、水を加えて沈殿濾過・濃縮し、水ガラス化する。これを脱水縮合させてシリカゲルとし、表面不純物を取り除くことで5N程度のSiO2とする。炭素を加えて専用炉で還元し、脱炭後に一方向凝固させる。
NEDO溶融精製法:金属グレードシリコンを電子ビームやプラズマで溶融させて特定の不純物を除いたあと、一方向凝固させる。
などの手法があり、SEGグレードのようにガス化を経なくても済む。

[編集] ケイ素化合物

[編集] 関連項目

Wiktionary
ウィクショナリーケイ素に関する記事があります。

[編集] 参照文献


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end mills、Специальные режущие инструменты Пустотелое сверло ‘Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Da Wikipedia, l'enciclopedia libera.

alluminio - silicio - fosforo
C
Si
Ge

Generale
Nome, Simbolo, N° Atomico Silicio, Si, 14
Serie chimica metalloidi
Gruppo, Periodo, Blocco 14 (IVA), 3, p
Densità, Durezza 2330 kg/m3, 6,5
Colore grigio scuro con riflessi bluastri
aspetto del silicio
Proprietà atomiche
Peso atomico 28,0855 amu
Raggio atomico 110 pm
Raggio covalente 210 pm
Raggio di van der Waals 118 pm
Configurazione elettronica Ne3s23p2
e- per livello energetico 2, 8, 4
Stato di ossidazione 4 (amfoterico)
Struttura cristallina Cubica a facce centrate con base:

\left(0,0,0\right), \left(\frac{1}{4},\frac{1}{4},\frac{1}{4}\right)

Parametro reticolare: 5.609Å

Proprietà fisiche
Stato di aggregazione solido (nonmagnetico)
Punto di fusione 1687 K (1413,85 °C)
Punto di ebollizione 3173 K (2899,85 °C)
Volume molare Template:12,06 cm3/mol
Calore di vaporizzazione 384,22 kJ/mol
Calore di fusione 50,55 kJ/mol
Pressione del vapore 4,77 Pa a 1683 K
Velocità del suono n.d.
Varie
Elettronegatività 1,90
Capacità calorica specifica 700 J/(kg*K)
Conducibilità elettrica 2,52 × 10-4/m ohm
Conducibilità termica 148 W/(m*K)
Energia di prima ionizzazione 786,5 kJ/mol
Energia di seconda ionizzazione 1577,1 kJ/mol
Energia di terza ionizzazione 3231,6 kJ/mol
Energia di quarta ionizzazione 4355,5 kJ/mol
Energia di quinta ionizzazione 16.091 kJ/mol
Energia di sesta ionizzazione 19.805 kJ/mol
Energia di settima ionizzazione 23.780 kJ/mol
Energia di ottava ionizzazione 29.287 kJ/mol
Nona energia di ionizzazione 33.878 kJ/mol
Decima energia di ionizzazione 38.726 kJ/mol
Isotopi stabili
iso NA TD DM DE DP
28Si 92,23% Si è stabile con 14 neutroni
29Si 4,67% Si è stabile con 15 neutroni
30Si 3,1% Si è stabile con 16 neutroni
32Si sintetico 276 anni β- 0,224 32P

iso = isotopo
NA = abbondanza in natura
TD = tempo di dimezzamento
DM = modalità di decadimento
DE = energia di decadimento in MeV
DP = prodotto del decadimento

Il silicio è l'elemento chimico della tavola periodica degli elementi che ha come simbolo Si e come numero atomico il 14. Un metalloide tetravalente, il Silicio è meno reattivo del suo analogo chimico, il carbonio. È il secondo elemento per abbondanza nella crosta terrestre dopo l'ossigeno, componendone il 25,7% del peso. Si trova in argilla, feldspato, granito, quarzo e sabbia, principalmente in forma di biossido di silicio, silicati e alluminosilicati (composti contenenti silicio, ossigeno e metalli). Il silicio è il componente principale di vetro, cemento, semiconduttori, ceramica e silicone.

Caratteristiche [modifica]

Nella sua forma cristallina, il silicio ha colore grigio e una lucidità metallica. Anche se è un elemento relativamente inerte, reagisce con gli alogeni e gli alcali diluiti, ma la maggior parte degli acidi (eccetto l'acido fluoridrico) non lo intaccano.

Il silicio elementare trasmette più del 95% di tutte le lunghezze d'onda della luce infrarossa.

Il silicio è alla base di tutti i silicati, minerali formati da silicio e ossigeno più altri elementi in forma ionica. I silicati sono contenuti nei magmi e per la struttura tetraedica della silice, il magma diventa più vischioso, e capace di trattenere maggiori quantità di gas. In base al contenuto di silice si determina l'acidità di un magma e delle rocce dal quale derivano. Se è poco presente il magma si dirà basico.

Applicazioni [modifica]

Il silicio è un elemento molto utile, ed è vitale per molte industrie. Il diossido di silicio in forma di sabbia e argilla è un importante ingrediente del cemento e dei mattoni, ed è molto importante per la vita animale e vegetale. Le diatomee estraggono la silice dall'acqua per costruire i muri protettivi delle loro cellule; gli equiseti lo concentrano nel fusto della pianta usandolo per conferirgli robustezza e notevole resistenza alla masticazione, per scoraggiare gli erbivori. Altri usi:

  • È un materiale refrattario usato nella produzione di materiali ad alte temperature, e i suoi silicati sono impiegati nella fabbricazione di smalti e terraglie.
  • Il silicio è un importante costituente di alcuni tipi di acciaio; il suo limite di concentrazione è del 5%, in quanto oltre si ha un notevole abbassamento della resilienza a causa del suo potenziale di accrescimento della grana cristallina. Rende inoltre possibile far separare grafite negli acciai anche già a partire da concentrazioni di carbonio maggiori di 0,50%. Si segnala la sua presenza (1-2%) negli acciai per molle, dove accresce il limite elastico, avvicinandolo a quello di rottura, e favorisce la temprabilità.
  • La silice della sabbia è un componente principale del vetro.
  • Il carburo di silicio, chiamato anche carborundum, è uno dei più importanti abrasivi.
  • Il silicio ultrapuro è un semiconduttore intrinseco (o puro) e può essere drogato con arsenico, fosforo, gallio o boro per renderlo più conduttivo e utilizzarlo in transistor, pannelli solari o celle solari (solar cells) , e altre apparecchiature a semiconduttori, che sono utilizzate in elettronica e altre applicazioni ad alta tecnologia. Esistono due tipi di drograggio legati al silicio che permettono di dare eccesso di elettroni alla banda di conduzione (semiconduttore di tipo n) o lacune di elettroni alla banda di valenza (semiconduttore di tipo p).
  • Il silicio può essere usato nei laser per produrre luce coerente con una lunghezza d'onda di 4560 angstrom.
  • I siliconi sono composti flessibili contenenti legami silicio-ossigeno o silicio-carbonio; sono ampiamente usati in forma di gel per impianti artificiali del seno e per le lenti a contatto.
  • Il silicio idrogenato amorfo si è mostrato promettente per la produzione di celle solari e apparati elettronici a basso costo.
  • La silice è uno dei principali ingredienti dei mattoni a causa della sua bassa attività chimica.

Storia [modifica]

Il silicio (dal latino silex, silicis che significa selce) venne identificato per la prima volta da Antoine Lavoisier nel 1787, e venne successivamente scambiato per un composto da Humphry Davy nel 1800. Nel 1811 Gay Lussac e Thenard probabilmente prepararono del silicio amorfo impuro attraverso il riscaldamento di potassio con tetrafluoruro di silicio. Nel 1824 Berzelius preparò del silicio amorfo usando all'incirca lo stesso metodo di Lussac. Berzelius inoltre purificò il prodotto attraverso successivi lavaggi.

Disponibilità [modifica]

Il silicio è il principale componente degli aeroliti, che sono una classe di meteoroidi nonché della tectite, che è una forma naturale di vetro.

Calcolando in base al peso, il silicio compone il 25,7% della crosta terrestre e dopo l'ossigeno è il secondo elemento più abbondante sul pianeta. Il silicio elementare non si trova in natura, appare in genere come ossido (ametista, agata, quarzo, rocce cristalline, selce, diaspro, opale) e silicati (Granito, amianto, feldspato, argilla, hornblenda, mica e altri).

Produzione [modifica]

Il silicio viene preparato commercialmente tramite riscaldamento di silice ad elevato grado di purezza, in una fornace elettrica usando elettrodi di carbonio. A temperature superiori a 1900°C, il carbonio riduce la silice in silicio secondo l'equazione chimica

SiO2 + C → Si + CO2

Il silicio liquido si raccoglie in fondo alla fornace, e viene quindi prelevato e raffreddato. Il silicio prodotto tramite questo processo viene chiamato silicio di grado metallurgico(MGS) ed è puro al 98%. Per raggiungere gradi di purezza superiori necessari ad esempio per realizzare dispositivi elettronici a semiconduttore, è necessario praticare un ulteriore purificazione ad esempio con il metodo Siemens. Nel 2006, il silicio di grado metallurgico costava circa 2,23 $/kg.

Purificazione [modifica]

L'uso del silicio nei semiconduttori richiede una purezza più elevata di quella fornita dal silicio di grado metallurgico. Storicamente sono stati usati un numero di metodi diversi per produrre silicio ad alta purezza.

Metodi fisici [modifica]

Sbarra monocristallina di Silicio

Sbarra monocristallina di Silicio

Le prime tecniche di purificazione del silicio erano basate sul fatto che quando il silicio viene fuso e risolidificato, l'ultima parte di silicio che solidifica contiene la maggior parte delle impurezze. Il primissimo sistema di purificazione, descritto nel 1919 e usato su scala limitata per la fabbricazione di componenti dei radar durante la seconda guerra mondiale, richiedeva la polverizzazione del silicio di grado metallurgico e la sua parziale dissoluzione in acido. Quando veniva polverizzato, il silicio si spezzava in modo che le zone più deboli e ricche di impurità restassero all'esterno del risultante grano di silicio. come risultato, il silicio ricco di impurità era il primo a disciogliersi quando trattato con l'acido, lasciando un prodotto più puro.

Nella fusione a zona, il primo metodo di purificazione del silicio ad essere utilizzato su scala industriale, sbarre di silicio di grado metallurgico venivano riscaldate partendo da una delle sue estremità, fino a quando questa iniziava a fondersi. Il riscaldatore quindi veniva lentamente spostato lungo la sbarra mantenendo una piccola porzione fusa mentre il silicio si raffreddava e risolidificava dietro di essa. Poiché la maggior parte delle impurità tendeva a rimanere nella parte fusa piuttosto che risolidificarsi, alla fine del processo queste si erano spostate nell'ultima parte della sbarra ad essere fusa. Questa estremità veniva quindi tagliata e gettata, ripetendo il processo se una purezza più elevata era necessaria.

Metodi chimici [modifica]

Oggigiorno il silicio viene purificato convertendolo in un composto che può essere purificato più facilmente del silicio stesso, e quindi convertito di nuovo in silicio puro. Il triclorosilano è il composto di silicio più comunemente usato in questo processo, anche se a volte si utilizzano anche il tetracloruro di silicio e il silano. Questi composti, liquidi o gassosi, vengono purificati per distillazione frazionata fino ad ottenere una miscela di composti di solo silicio. Dopodiché questi gas vengono soffiati sopra a del silicio ad alta temperatura e si decompongono, depositando silicio policristallino ad alta purezza.

Nel processo Siemens, sbarre di silicio ultrapuro sono esposte al triclorosilano a 1150°C; il gas di triclorosilano si decompone e deposita dell'altro silicio sulla sbarra, allargandola secondo la reazione chimica

2 HSiCl3 → Si + 2 HCl + SiCl4

Il silicio prodotto da questo e da processi simili viene chiamato silicio policristallino. Il silicio policristallino ha un livello di impurità pari a 1 parte per miliardo o inferiore.

A un certo punto, la DuPont produsse silicio ultrapuro facendo reagire il tetracloruro di silicio con vapori di zinco ad alta purezza a 950°C, producendo silicio secondo la formula

SiCl4 + 2 Zn → Si + 2 ZnCl2

Comunque questa tecnica era afflitta da problemi pratici (come il cloruro di zinco, un sottoprodotto, che si solidificava bloccando le linee) e venne abbandonata a favore del processo Siemens.

Cristallizzazione [modifica]

Il processo Czochralski viene spesso usato per creare cristalli singoli di silicio ad alta purezza, che vengono impiegati nei semiconduttori a stato solido.

Isotopi [modifica]

Il silicio ha nove isotopi, con peso atomico che varia tra 25 e 33. Il 28Si (l'isotopo più abbondante, con il 92.23%), il 29Si (4.67%), e il 30Si (3.1%) sono stabili; il 32Si è un isotopo radioattivo prodotto dal decadimento dell'argon. La sua emivita, dopo un lungo dibattito, è stata determinata in circa 276 anni, e decade per emissione beta in 32P (che ha emivita di 14,28 anni) e quindi in 32S.

Precauzioni [modifica]

Una seria malattia dei polmoni chiamata silicosi è molto frequente tra i minatori, i tagliatori di pietre e altri lavoratori che sono impegnati in lavori dove polvere di silicio viene inalata in grandi quantità.

La Silicon Valley [modifica]

Poiché il silicio è un importante elemento dei semiconduttori e di tutta l'industria elettronica, la regione di Silicon Valley in California, nota per le numerose aziende di informatica ed elettronica, prende il suo nome da questo elemento (Silicon in inglese).

Curiosità [modifica]

Spesso i traduttori traducono la parola inglese silicon (che significa appunto silicio) con silicone, a causa della somiglianza dei due vocaboli. Capita quindi spesso di trovare diciture come chip di silicone che derivano da questa errata traduzione.

Voci correlate [modifica]

In riferimento alle applicazioni in elettronica:


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end mills、Специальные режущие инструменты Пустотелое сверло ‘Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Úr Wikipediu, frjálsa alfræðiritinu

Fara á: flakk, leita
Kolefni
Ál Kísill Fosfór
German
Útlit Kísill
Efnatákn Si
Sætistala 14
Efnaflokkur Málmungur
Eðlismassi 2330,0 kg/
Harka 6,5
Atómmassi 28,0855 g/mól
Bræðslumark 1687,0 K
Suðumark 3173,0 K
Efnisástand
(við staðalaðstæður)
Fast efni (ósegulmagnað)
Lotukerfið

Kísill er frumefni með efnatáknið Si og er númer fjórtán í lotukerfinu. Fjórgildur málmungur, kísill er ekki jafn hvarfgjarn og efnafræðileg hliðstæða þess, kolefni. Kísill er annað algengasta frumefnið í jarðskorpunni sem að samanstendur af 25,7% kísil ef mælt er eftir þyngd. Það finnst í leir, feldspati, kvars og sandi, þá aðallega í formi kísiltvíoxíðs (þekkt einnig sem kísl) eða sílikata (efnasambönd sem að innihalda kísil, súrefni og málma). Kísill er aðaluppistaða glers, sements, postulíns, flestra hálfleiðara, og silíkona (plastefni).


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end mills、Специальные режущие инструменты Пустотелое сверло ‘Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Főbb kémiai reakciói:

Hidrogénnel alkotott vegyületei a folyékony halmazállapotú szilán (SiH4), mely öngyulladásra képes és a diszilán (SiH6) kivételével gáz halmazállapotúak (pl.: Si6H14 hexaszilán). Halogénekkel csak magas hőmérsékleten reagál (SiX4), kivéve a fluort. Oxigénnel reagálva 600 °C felett szilícium-dioxid , nitrogénnel 1400 °C felett nitrid, szénnel 2000 °C felett karbid keletkezik. Fémekkel szilicidet alkot. Vízzel és savval nem reagál, de a lúgokban jól oldódik. Berzelius szilícium-dioxid és magnézium segítségével állította elő az elemi Si-t: SiO2 + 2 Mg = 2 MgO + Si

Felhasználása, előfordulása:

Az elemi szilíciumot a fémkohászatban és a félvezető-technikában különböző tisztasági fokozatokban hasznosítják. A természetben elemi állapotban egyáltalán nem, oxidált formában azonban megtalálható: a második leggyakoribb elem a Földön. A földkéreg tömegének egynegyedét is a kötött állapotú szilícium adja: kavics, homok, agyag, kova, kvarc alkotóeleme. Az élővilágban a kovaszivacsok, kovamoszatok, zsurlók, sások testfelépítésében játszik fontos szerepet.

Az informatikai iparban a számítógépek processzorait (CPU) szilícium lapkák alkotják. A kohászatban is fontos szerepet tölt be: korrózióálló acélok előállításához használják ötvőzőanyagként.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end mills、Специальные режущие инструменты Пустотелое сверло ‘Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Kemija > Kemijski element > H - He - Li - Be - B - C - N - O - F - Ne - Na - Mg - Al - Si - P - S - Cl - Ar - K - Ca - Sc - Ti - V - Cr - Mn - Fe - Co - Ni - Cu - Zn - Ga - Ge - As - Se - Br - Kr - Rb - Sr - Y - Zr - Nb - Mo - Tc - Ru - Rh - Pd - Ag - Cd - In - Sn - Sb - Te - I - Xe - Cs - Ba - La - Ce - Pr - Nd - Pm - Sm - Eu - Gd - Tb - Dy - Ho - Er - Tm - Yb - Lu - Hf - Ta - W - Re - Os - Ir - Pt - Au - Hg - Tl - Pb - Bi - Po - At - Rn - Fr - Ra - Ac - Th - Pa - U - Np - Pu - Am - Cm - Bk - Cf - Es - Fm - Md - No - Lr - Rf - Db - Sg - Bh - Hs - Mt - Ds - Rg - Uub - Uut - Uuq - Uup - Uuh - Uus - Uuo
Osnovna svojstva
Ime elementa, simbol, atomski broj Silicij, Si, 14
Kemijska skupina Polumetali
Grupa, perioda, Blok 14, 3, p
Gustoća, Tvrdoća 2 330 kg/m3, 6.5
Atomska svojstva
Atomska masa 28.0855
Elektronska konfiguracija [Ne] 3s ² 3p &sup2

Silicij je kemijski element koji u periodnom sustavu elemenata nosi simbol Si, atomski (redni) broj mu je 14, a atomska masa mu iznosi 28.0855.


Hrvatski naziv za njega je kremik.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end mills、Специальные режущие инструменты Пустотелое сверло ‘Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
ערך זה עוסק ביסוד כימי. לערך העוסק במשמעויות אחרות של המלה "צורן", ראו צורן (פירושונים).
זרחן - צורן - אלומיניום

C
Si
Ge

כללי
מספר אטומי 14
סמל כימי Si
סדרה כימית מתכות למחצה
צפיפות 2330 kg/m3
מראה אפור כהה בגוון כחלחל
תכונות אטומיות
משקל אטומי 28.0855 amu
רדיוס ואן דר ולס 210 pm
סידור אלקטרונים ברמות אנרגיה 2, 8, 4
תכונות פיזיקליות
מצב צבירה בטמפ' החדר מוצק
טמפרטורת התכה 1,414°C
טמפרטורת רתיחה 2,900°C
לחץ אדים 4.77Pa ב 1683°K
מהירות הקול ____ מטר לשנייה ב____°K
שונות
אלקטרושליליות 1.90
קיבול חום סגולי 700 J/(kg·K)
מוליכות חשמלית 2.52 \ 10^{-4}/m·Ω
מוליכות תרמית 148 W/(m·K)
אנרגיית יינון ראשונה 786.5 kJ/mol

צורן, הידוע יותר בשמו הלועזי סיליקון, הוא יסוד כימי שסמלו Si ומספרו האטומי 14. שמו הלועזי של היסוד, סיליקון (Silicon), נכתב בעברית בדיוק כמו סיליקון (Silicone), אך אלו חומרים שונים. צורן הוא יסוד ואילו סיליקון (Silicone) הוא שם כולל לתרכובות אי אורגניות (בעיקר פולימרים) שמכילות את היסוד צורן.

[עריכה] תכונות

בצורתו הגבישית, לצורן צבע אפור כהה וברק מתכתי. צורן הוא יסוד אדיש יחסית מבחינה כימית, הוא מגיב עם הלוגנים ומתכות אלקליות, אבל אינו מושפע מחומצות (פרט לתערובת חומצה חנקתית וחומצה פלואורית). צורן טהור מעביר 95% מאורכי הגל של אינפרא אדום. בצורה זו הוא נמצא לעתים רחוקות בטבע, ובדרך כלל הוא מופיע כצורן דו חמצני (SiO2).

[עריכה] שימושים

צורן הוא המרכיב העיקרי בזכוכית, מלט, קרמיקה, רוב השבבים האלקטרוניים, בסיליקונים (Silicone) ופולימרים על בסיס צורן. הצורן הוא אחד החומרים היחידים (בתור בסיס) אשר גם מוליך, וגם לא מוליך - הדבר נתון לבחירת המשתמש: אם נשנה את מצב הצבירה של הצורן, הוא יכול להוליך חום וחשמל, ואם נשנה את מצב הצבירה בשנית, הוא יפסיק להוליך חום וחשמל. דרך נוספת משמעותית יותר לשנות את מוליכות הסיליקון הוא זיהומו ביסודות אחרים עם תכונות חשמליות שונות (ללא שינוי מצב הצבירה). תכונה זאת של הסיליקון ומספר תכונות נוספות מאפשר לו להיות אבן בניין חיונית ליצור טרנזיסטורים - הבסיס לכל סוגי האלקטרוניקה המודרנית.

[עריכה] שימושים נוספים:

  • צורן יכול לעתים להועיל כשהוא מוסף לסגסוגות
  • ייצור ארד, שהוא סגסוגת של נחושת ובדיל.
  • סיליקה (צורן דו חמצני) היא חומר גלם בייצור זכוכית.
  • שילוב צורן בלייזר יכול ליצור אורך גל עקבי של 456 ננומטר.
  • לצורן תכונות שמבטיחות בעתיד ייצור מסכי LCD ותאים סולריים בעלות נמוכה.

[עריכה] היסטוריה

צורן זוהה לראשונה על ידי אנטואן לבואזיה ב1787, וב1800 הוגדר בטעות כתרכובת על ידי האמפרי דייווי. ב1811 לואי ז'וזף גיי-ליסק וLouis Jacques Thénard הכינו צורן לא טהור באמצעות חימום אשלגן וצורן ארבע פלואורי (SiF4). בשנת 1824 הפיק יונס יעקב ברצליוס צורן טהור לאחר שזיקק את התוצר שקיבלו גיי-ליסק וLouis Jacques Thénard.

מכיוון שצורן הוא יסוד חשוב בתעשיית המוליכים למחצה וההיי-טק, נקרא אזור ההיי-טק בקליפורניה "עמק הסיליקון".

[עריכה] צורה בטבע

הצורן הוא היסוד השני בשכיחותו בקרום כדור הארץ (אחרי חמצן), ומהווה 25.7% ממשקלו. הצורן מופיע בחול, קוורץ, גרניט, בעיקר בצורת צורן דו-חמצני (הידוע גם בשם סיליקה) או סיליקטים (תרכובות של צורן, חמצן ומתכות שונות).

[עריכה] ייצור

צורן מופק מסחרית בחימום סיליקה טהורה בכבשן חשמלי, המשתמש באלקטרודות מפחמן. בטמפרטורה העולה על 1900C°, מתרחשת התגובה הבאה:

\ SiO_{2(s)} + C_{(s)} \rarr Si_{(s)} + CO_{2(g)}

צורן נוזלי מצטבר בתחתית הכבשן, מנוקז ומקורר. בשיטה זו מתקבל צורן 99% טהור ואחד מתוצרי הלוואי הוא SiC. על מנת להימנע מתוצר לוואי זה, ריכוז הצורן הטהור נשמר גבוה ואז מתרחשת התגובה:

\ 2SiC_{(s)} + SiO_{2(s)} \rarr 3Si_{(s)} + 2CO_{(g)}

[עריכה] טיהור

השימוש בצורן בתעשיית המוליכים למחצה דורש ייצור צורן טהור כמה שאפשר, לא כמו בשימושים אחרים שבהם אפשר להסתפק באחוזי צורן נמוכים יחסית. שתי שיטות בולטות במיוחד:

[עריכה] טכניקה I

טכניקות טיהור צורן ראשוניות התבססו על העובדה שכשצורן ניתך ולאחר מכן מתמצק, המצב המוצק מכיל צורן טהור יותר מהמצב הנוזלי. הטכניקה הראשונה, שתוארה ב1919 ושימשה בייצור מכ"ם במלחמת העולם השנייה, כללה ריסוק צורן גבישי לאבקה והשרייתו בחומצה. כשצורן נטחן לאבקה, חלקים מזהמים (מרכיבים שאינם צורן) מופנים כלפי הצד החיצוני של גרגרי האבקה ונשטפים עם החומצה.

[עריכה] טכניקה II

יותר קל לטהר צורן מתרכובות שלו מאשר מצורתו הגבישית. SiCl4 וSiH4 הן התרכובות השימושיות ביותר וכשהן במצב צבירה גז ונוגעות בצורן בטמפרטורה גבוהה, הן משתלבות איתו ויוצרות צורן טהור. בטכניקה הנפוצה ביותר, שנקראת תהליך סימנס, מוטות צורן טהורים נחשפים לHSiCl3 גזי ב1150°C. הצורן שבגז מצטרף למוטות הצורן בהתאם לתגובה הבאה:

\ 2HSiCl_{3(g)} \rarr Si_{(s)} + 2HCl_{(g)} + SiCl_{4(g)}

בשיטה נוספת, הפיקה חברת דופונט צורן טהור ברמה גבוהה כשחשפו SiCl4 לאבץ ב950°C בהתאם לתגובה הבאה:

\ SiCl_{4(g)} + 2Zn_{(l)} \rarr Si_{(s)} + 2ZnCl_{2(g)}

בסופו של דבר טכניקה זו נזנחה לטובת תהליך סימנס מכיוון שהייתה כרוכה בבעיות רבות.

[עריכה] אמצעי זהירות

מחלת ריאות בשם "צורנת" מופיע אצל כורים, סתתים ושאר אנשים שעבדו ושאפו אבק סיליקה בכמויות גדולות.

[עריכה] קישורים


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end mills、Специальные режущие инструменты Пустотелое сверло ‘Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
આવર્ત કોષ્ટક માં સિલિકોન

આવર્ત કોષ્ટક માં સિલિકોન

સિલિકોન એક તત્વ છે જેનો ક્રમાંક ૧૪ અને ચિહ્ન Si છે. સિલિકોન કાર્બન સમુહમાં કાર્બન પછીનું બીજું તત્વ છે. પૃથ્વીનું સ્તર મહદ્ અંશે સિલિકેટ સંયોજનોનું બનેલું છે. સિલિકોન સ્ફટિક સ્વરૂપમાં હીરા જેવી જાળીદાર રચના ધરાવે છે. ૨૦મી સદીના મધ્યભાગ થી સિલિકોન નો ઉપયોગ વિજાણુ યંત્રો બનાવવામાં થઇ રહ્યો છે જે દિન પ્રતિદિન માનવજીવન નું એક અવિભાજ્ય અંગ બની રહ્યા છે.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end mills、Специальные режущие инструменты Пустотелое сверло ‘Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Na Galipedia, a wikipedia en galego.

Aluminio - Silicio - Fósforo
C

Si

Ge

Xeneral
Nome, símbolo, número Silicio, Si, 14
Serie química Metaloide
Grupo, período, bloque 14, 3, p
Densidade, dureza Mohs 2330 kg/m³, 6,5
Aparencia Gris escuro cun ton azul

Propiedades atómicas
Peso atómico 28,0855 uma
Radio medio† 110 pm
Radio atómico calculado 111 pm
Radio covalente 111 pm
Radio de Van der Waals 210 pm
Configuración electrónica [[[neon|Ne]]]3s² 3p²
Estado de oxidación (óxido) 4 (anfótero)
Estrutura cristalina cúbica centrada nas caras
Propiedades físicas
Estado da materia sólido (non magnético)
Punto de fusión 1687 K
Punto de ebulición 3173 K
Entalpía de vaporización 384,22 kJ/mol
Entalpía de fusión 50,55 kJ/mol
Presión de vapor 4,77 Pa a 1683 K
Velocidade do son __ m/s a __ K
Información diversa
Electronegatividade 1,90 (Pauling)
Calor específica 700 J/(kg*K)
Condutividade eléctrica 2,52 x 10-4 m-1·Ω-1
Condutividade térmica 148 W/(m*K)
potencial de ionización 786,5 kJ/mol
2° potencial de ionización 1577,1 kJ/mol
3° potencial de ionización 3231,6 kJ/mol
4° potencial de ionización 4355,5 kJ/mol
5° potencial de ionización 16091 kJ/mol
6° potencial de ionización 19805 kJ/mol
7° potencial de ionización 23780 kJ/mol
8° potencial de ionización 29287 kJ/mol
9° potencial de ionización 33878 kJ/mol
10° potencial de ionización 38726 kJ/mol
Isótopos máis estables
iso. AN vida media MD ED MeV PD
28Si 92,23% Si é estable con 14 neutróns
29Si 4,67% Si é estable con 15 neutrones
30Si 3,1% Si é estable con 16 neutrones
32Si {sen} 276 a ?- 0,224 32P
Valores no SI e condicións normais
(0 ºC e 1 atm), agás indicación en contra.
Calculado a partir de distintas lonxitudes
de enlace covalente, metálico ou iónico.

O silicio é un elemento químico non metálico situado no grupo 14 da táboa periódica dos elementos formando parte da familia dos carbonoideos. É o segundo elemento máis abundante na codia terrestre (27,7% en peso) despois do osíxeno. Preséntase en forma amorfa e cristalizada; o primeiro é un po pardo, máis activo cá variante cristalina, que se presenta en octaedros de cor azul grisalla e brillo metálico.

[editar] Características principais

As súas propiedades son intermedias entre as do carbono e do xermanio. En forma cristalina é moi duro e pouco soluble e presenta un brillo metálico e cor grisalla. Aínda que é un elemento relativamente inerte e resiste a acción da maioría dos ácidos, reacciona cos halóxenos e álcalis diluídos. O silicio transmite máis do 95% das lonxitudes de onda da radiación infravermella.

[editar] Aplicacións

Utilízase en aliaxes, na preparación das siliconas, na industria da cerámica técnica e, debido a que é un material semicondutor moi abundante, ten un interese especial na industria electrónica e microelectrónica como material básico para a creación de obleas ou chips que se poden implantar en transistores, pilas solares e unha gran variedade de circuítos electrónicos.

O silicio é un elemento vital en numerosas industrias. O dióxido de silicio (area e arxila) é un importante constituínte do formigón e os ladrillos, e emprégase na produción de cemento portland. Polas súas propiedades semicondutoras úsase na fabricación de transistores, células solares e todo tipo de dispositivos semicondutores; por esta razón coñécese como Silicon Valley (Val do Silicio) á rexión de California en que se concentran numerosas empresas do sector da electrónica e a informática.

Outros importantes usos do silicio son:

[editar] Historia

O silicio (do latín silex, sílice) foi identificado por primeira vez por Antoine Lavoisier en 1787, e posteriormente tomado como composto por Humphry Davy en 1800. En 1811 Gay-Lussac, e Louis Thenard probablemente, preparou silicio amorfo impuro quentando potasio con tetrafluoruro de silicio. En 1824 Berzelius preparou silicio amorfo empregando un método similar ao de Gay-Lussac, purificando despois o produto mediante lavados sucesivos ata illar o elemento.

[editar] Abundancia e obtención

O silicio é un dos compoñentes principais dos aerólitos, unha clase de meteoroides.

Medido en peso o silicio representa máis da cuarta parte da codia terrestre e é o segundo elemento máis abundante por detrás do osíxeno. O silicio non se atopa en estado nativo; area, seixo, ametista, ágata, pedernal, ópalo e xaspe son algunhas dos minerales en que aparece o óxido, mentres que formando silicatos atópase, entre outros, no granito, feldespato, arxila, hornblenda e mica.

O silicio comercial obtense a partir de sílice de alta pureza en forno de arco eléctrico reducindo o óxido con electrodos de carbono a temperatura superior a 1900 ºC:

SiO2 + C → Si + CO2

O silicio líquido acumúlase no fondo do forno de onde se extrae e se arrefría. O silicio producido por este proceso denomínase metalúrxico e ten unha pureza superior ao 99%. Para a construción de dispositivos semiconductores é necesario un silicio de maior pureza, silicio ultrapuro, que pode obterse por métodos físicos ou químicos.

Os métodos físicos de purificación do silicio metalúrxico baséanse na maior solubilidade das impurezas no silicio líquido, de forma que este se concentra nas últimas zonas solidificadas. O primeiro método, usado de forma limitada para construír compoñentes de radar durante a Segunda Guerra Mundial, consiste en moer o silicio de forma que as impurezas se acumulen nas superficies dos grans; disolvendo estes parcialmente con ácido obtíñase un po máis puro. A fusión por zonas, o primeiro método usado a escala industrial, consiste en fundir un extremo da barra de silicio e trasladar lentamente o foco de calor ao longo da barra de modo que o silicio vai solidificando cunha pureza maior ao arrastrar a zona fundida gran parte das impurezas. O proceso pode repetirse as veces que sexa necesario ata lograr a pureza desexada bastando entón cortar o extremo final en que se acumularon as impurezas.

Os métodos químicos, usados actualmente, actúan sobre un composto de silicio que sexa máis doado de purificar descompoñéndoo trala purificación para obter o silicio. Os compostos comunmente usados son o triclorosilano (HSiCl3), o tetracloruro de silicio (SiCl4) e o silano (SiH4).

No proceso Siemens, as barras de silicio de alta pureza expóñense a 1150ºC ao triclorosilano, gas que se descompón depositando silicio adicional na barra segundo a seguinte reacción:

2 HSiCl3 → Si + 2 HCl + SiCl4

O silicio producido por este e outros métodos similares denomínase silicio policristalino e tipicamente ten unha fracción de impurezas de 0,001 ppm ou menor.

O método Dupont consiste en facer reaccionar tetracloruro de silicio a 950ºC con vapores de cinc moi puros:

SiCl4 + 2 Zn → Si + 2 ZnCl2

Este método, así a todo, está inzado de dificultades (o cloruro de cinc, subproducto da reacción, solidifica e obstrúe as liñas) polo que eventualmente se abandonou en favor do proceso Siemens.

Unha vez obtido o silicio ultrapuro é necesario obter un monocristal, para o que se utiliza o proceso Czochralski.

[editar] Isótopos

O silicio ten nove isótopos, con número másico entre 25 a 33. O isótopo mais abundante é o Si 28 cunha abundancia do 92.23%, o Si 29 ten unha abundancia do 4.67% e o Si 30 que ten unha abundancia do 3.1 todos eles son estables. O Si 32 é radioactivo, provén do decaemento do argon. O seu tempo de semivida é aproximadamente duns 276 anos. Padece un decaemento beta que o transforma en P-32 (que ten un período de semivida de 14.28 anos).

[editar] Precaucións

A inhalación do po de sílice cristalina pode provocar silicose

[editar] Referencias exteriores


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end mills、Специальные режущие инструменты Пустотелое сверло ‘Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Données v · d · m
Aluminium - Silicium - Phosphore
C
Si
Ge

Général
Nom, Symbole, Numéro Silicium, Si, 14
Série chimique métalloïde
Groupe, Période, Bloc 14, 3, p
Masse volumique 2330 kg/m3
Couleur Gris foncé
Propriétés atomiques
Masse atomique 28,0855 u
Rayon atomique (calc) 110 (111) pm
Rayon de covalence 111 pm
Rayon de van der Waals 210 pm
Configuration électronique [Ne] 3s2 3p2
Électrons par niveau d'énergie 2, 8, 4
État(s) d'oxydation 4
Oxyde amphotère
Structure cristalline cubique face centrée
Propriétés physiques
État ordinaire solide diamagnétique
Température de fusion 1687 K
Température de vaporisation 3173 K
Énergie de fusion 50,55 kJ/mol
Énergie de vaporisation 384,22 kJ/mol
Volume molaire 12,06 ×10-6 m3/mol
Pression de la vapeur 4,77 Pa
Vélocité du son ND m/s à 20 °C
Divers
Électronégativité (Pauling) 1,90
Chaleur massique 700 J/(kg·K)
Conductivité électrique 2,52 10-4 S/m
Conductivité thermique 148 W/(m·K)
1er potentiel d'ionisation 786,5 kJ/mol
2e potentiel d'ionisation 1577,1 kJ/mol
3e potentiel d'ionisation 3231,6 kJ/mol
4e potentiel d'ionisation 4355,5 kJ/mol
5e potentiel d'ionisation 16091 kJ/mol
6e potentiel d'ionisation 19805 kJ/mol
7e potentiel d'ionisation 23780 kJ/mol
8e potentiel d'ionisation 29287 kJ/mol
9e potentiel d'ionisation 33878 kJ/mol
10e potentiel d'ionisation 38726 kJ/mol
Isotopes les plus stables
iso AN période MD Ed MeV PD
28Si 92,23 % stable avec 14 neutrons
29Si 4,67 % stable avec 15 neutrons
30Si 3,1% stable avec 16 neutrons
32Si {syn} 172 ans β- 0,224 32P
Unités du SI & CNTP, sauf indication contraire.

Le silicium est un élément chimique de la famille des cristallogènes, de symbole Si et de numéro atomique 14.

C'est l'élément le plus abondant sur la Terre après l'oxygène (27,6%). Il n'existe pas à l'état libre mais sous forme de composés : sous forme de dioxyde, la silice (dans le sable, le quartz, la cristobalite, etc . . .) ou de silicates (dans les feldspath, la kaolinite, etc).

Le nom dérive du latin silex, ce qui signifie cailloux ou silex.

Caractéristiques [modifier]

Les cristaux de silicium sont gris à noirs, en forme d'aiguille ou d'hexaèdres (forme cubique). La phase amorphe est une poudre marron foncée.
Le silicium est un conducteur d'électricité ; mais sa conductivité électrique est très inférieure à celle des métaux. Il est quasi insoluble dans l'eau. Il est attaqué par l'acide fluorhydrique (HF) ou un mélange acide fluorhydrique/acide nitrique (HNO3) en fonction de la phase. Le silicium présente des reflets métalliques bleutés, mais n'est pas du tout aussi ductile que les métaux.

Il existe trois isotopes naturels du silicium: 28Si (92,18%), 29Si(4,71%) et 30Si(3,12%). Il existe également des isotopes artificiels: 25Si, 26Si, 27Si, 31Si, 32Si.

Découverte [modifier]

Un des composés du silicium, la silice (dioxyde de silicium), était déjà connu dans l'Antiquité. La silice a été considérée comme élément par les alchimistes puis les chimistes. C'est un composé très abondant dans les minéraux.

Du silicium a été isolé pour la première fois en 1823 par Jöns Jacob Berzelius. Ce n'est qu'en 1854 que Henry Sainte-Claire Deville obtient du silicium cristallin.

Utilisations [modifier]

Alliages Aluminium-Silicium [modifier]

La principale utilisation du silicium en tant que corps simple est comme élément d'alliage avec l'aluminium. Les alliages Aluminium-Silicium (AS ou série 40000 suivant NF EN 1780-1) sont utilisés pour l'élaboration de pièces moulées, en particulier pour l'automobile (par exemple jantes en alliage) et l'aéronautique (par exemple éléments de moteurs électriques embarqués). Les alliages Aluminium-Silicium représentent à peu près 55 % de la consommation mondiale de silicium.

Pour plus de détails, voir l'article : alliages d'aluminium pour fonderie.

Silicones [modifier]

Une autre utilisation importante du silicium est la synthèse des silicones. Cette application représente à peu près 40 % de la consommation de silicium.

Semi-conducteur [modifier]

Le silicium est un élément de très grande importance de nos jours. Ses propriétés de semi-conducteur ont permis la création de la deuxième génération de transistors, puis les circuits intégrés (les « puces »). C'est aujourd'hui encore l'un des éléments essentiels pour l'électronique, notamment grâce à la capacité technologique actuelle permettant d'obtenir du silicium pur à plus de 99,99999% (tirage Czochralski, zone fondue flottante).

La magie de la lithographie sur silicium : les productions commerciales courantes (2007) de circuit intégré réalisent la prouesse d'une finesse de gravure de 45 nm sur des plaques de 30 cm (12 pouces, la taille d'un disque 33 tours). Ce qui permettrait de graver 600 millions de sillons (soit un disque de 20 millions de minutes, environ 40 ans de musique, ou bien de l'ordre de 20 milliards de chansons au format numérique Ogg Vorbis).

Photovoltaïque [modifier]

En tant que semi-conducteur, le silicium est aussi l'élément principal utilisé pour la fabrication de cellules solaires photovoltaïques. Celles-ci sont alors montées en panneaux solaires pour la génération d'électricité.

Composants mécaniques [modifier]

Le silicium présente à l'état pur des caractéristiques mécaniques élevées qui le font utiliser pour la réalisation de petites pièces destinées à certains micromécanismes et même à la fabrication de ressorts spiraux destinés à des montres mécaniques haut de gamme.

Composés [modifier]

  • La silice se trouve dans la nature sous forme compacte (galets, quartz filonien par exemple), ou sous forme de sable plus ou moins fin. On l'obtient aussi industriellement, sous forme pulvérulente. La silice a de nombreux usages.
    • le verre est fabriqué depuis des millénaires en faisant fondre du sable principalement composé de SiO2 avec du carbonate de calcium CaCO3 et du carbonate de sodium Na2CO3. Le verre peut être amélioré par différents additifs.
    • le sable de silice est un des composants des céramiques.
    • le quartz forme de superbes cristaux, est utilisé comme matériau transparent, plus résistant à la chaleur que le verre (ampoule de lampes halogène). Il est également beaucoup plus difficile à fondre et à travailler.
    • la silice intervient aux côtés du carbone dans la fabrication des pneumatique économes en énergie.
    • la silice très fine est utilisée comme constituant d'adjuvants pour les bétons à haute performance.
  • Le ferro-silicium, le silico-calcium, sont utilisés comme éléments d'addition dans l'élaboration de l'acier ou de la fonte.
  • Le carbure de silicium possède une structure cristalline analogue à celle du diamant ; sa dureté en est très proche. Il est utilisé comme abrasif ou sous forme céramique dans les outils d'usinage.
  • Le silicate de calcium CaSiO3 est un des composants des ciments.
  • Les silicones : ces polymères [(CH3)2SiO]n sont utilisés dans des mastics pour joint, des graisses résistantes à l'eau ou conductrices de la chaleur, les poudres lessivielles ou les shampoings conditionneurs, etc.
Il faut signaler, pour éviter une fréquente erreur de traduction depuis l'anglais, que l'anglais silicon signifie silicium, tandis que silicone correspond bien au silicone. De son côté, "silica" désigne la silice.

Dans la nature [modifier]

Minéraux [modifier]

Essentiellement présent sous forme minérale, le silicium est constitutif du sable de silice, résultat de la dégradation de roches comme le granit (composé de feldspath, de mica et de silice (quartz)).

Molécules organiques [modifier]

Le silicium se trouve dans certaines molécules organiques, comme les silanes — méthylsilanetriols, diméthylsilanediol —, les silatranes.

Biologie du silicium[1] [modifier]

Les diatomées, présentent dans le plancton, participent au cycle géochimique du silicium dans les mers, car elles extraient la silice pour former leurs membranes externes.

L'organisme humain contient entre 200 mg et 7 g de silicium, suivant les sources. Le silicium se retrouve dans tous les glycosaminoglycanes et polyuronides : chondroïtine sulfate, dermatan-sulfate, kératan-sulfate, héparan-sulfate et héparine. L’acide hyaluronique est la macromolécule la plus riche en silicium. Le silicium est aussi impliqué dans la synthèse du collagène (3 à 6 atomes de Si par chaîne alpha) et de l'élastine. Le silicium est un constituant important de la paroi artérielle. L'aorte se trouve être le tissu qui en contient le plus avec la peau et le thymus. Le taux de silicium dans ces tissus diminue avec l'âge dans des proportions très importantes (perte supérieure à 60-70 %).

Le silicium potentialiserait l'action du Zinc (Zn) et du Cuivre (Cu) et permettrait la fixation du Calcium (Ca). Les céréales et l'eau de boisson (dont la bière fabriquée à partir d'eau et de céréales) apportent naturellement la quantité suffisante (25 mg par jour) pour satisfaire les besoins (environ 5 mg/jour). L'Afssa (Agence Française de Sécurité Sanitaire des Aliments) n'a pas défini d'apports nutritionnels conseillés pour le silicium car ils sont largement couverts par l'alimentation. Par abus, certains parlent de « silice organique ». Il semble que cette dénomination soit plutôt un procédé commercial dans le domaine des médecines parallèles.

L'hypothétique biochimie à base de silicium [modifier]

À la limite de la science et de la science-fiction, de multiples travaux[réf. nécessaire] visent à mettre en évidence la possibilité d'une toute autre forme de vie, basée non pas sur le carbone, mais sur le silicium. Ceci se base sur le fait que le silicium est non seulement [tétravalence|tétravalent]] comme le carbone, mais qu'il est suceptible de former des complexes penta- et hexa-coordinés chargés et stables. Ils pourraient avoir des propriétés catalytiques intéressantes qui ont peu été explorées dans les hypothèses exobiologiques. Il faut cependant noter que le silicium n'a qu'une faible capacité à former des liaisons multiples, puisque l'énergie de dissociation des liaisons π est beaucoup plus faible que celle des liaisons π impliquant le carbone [2].

La position médiane actuelle semble être négative, le silicium ne participant que peu à des réactions biologiques mais servant plutôt de support (enveloppes, squelettes, gels, ...).

Production industrielle du silicium par électrométallurgie [modifier]

Le silicium n'existe pas naturellement à l'état libre sur la terre ; mais il est très abondant sous une forme oxydée : silice, silicates.

Pour obtenir du silicium libre (parfois appelé improprement "silicium métal" pour le distinguer du ferrosilicium), il faut donc le réduire ; industriellement, cette réduction s'effectue par électrométallurgie, dans des fours électriques ouverts dont la puissance peut aller jusqu'à environ 30 MW. La réaction globale de principe (oxydo-réduction) est très simple :

SiO2 + C → Si + CO2

La réalité est plus complexe, avec des réactions intermédiaires conduisant par exemple à la formation de SiC, de SiO (instable).

En pratique, le silicium est introduit sous forme de morceaux de silice (galets, ou morceaux de quartz filonien), en mélange avec des réducteurs tels que le bois, le charbon de bois, la houille, le coke de pétrole. Compte tenu des exigences de pureté des applications finales, la silice doit être relativement pure (faible teneur en oxyde de fer en particulier), et les réducteurs soigneusement choisis (houille lavée par exemple).

Le mélange est déversé dans un creuset de plusieurs mètres de diamètre, où plongent des électrodes cylindriques en carbone (trois le plus souvent) qui apportent la puissance électrique et permettent d'atteindre les très hautes températures dont les réactions recherchées ont besoin (autour de 3000°C dans la région de l'arc électrique, à la pointe des électrodes).

Le silicium obtenu est recueilli dans des "poches", à l'état liquide, grâce à des orifices pratiqués dans le creuset.

Il est ensuite affiné dans ces poches, par injection d'air pour oxyder l'aluminium et le calcium.

Puis il est séparé du "laitier" (oxydes produits au cours des différentes étapes du procédé et entraînés avec le silicium) avant d'être solidifié :

  • soit par coulée en lingotières ou sur une surface plane,
  • soit par granulation à l'eau (le silicium liquide est alors versé dans de l'eau et les gouttes de silicium se solidifient en petits granules : opération relativement délicate).

Les réactions intermédiaires conduisant à la réduction du silicium produisent aussi une très fine poussière de silice amorphe, qui est entraînée par les gaz chauds (essentiellement air et dioxyde de carbone) émis par le four ; dans les pays développés, ces gaz sont filtrés pour recueillir la poussière de silice amorphe, qui est utilisée comme élément d'addition dans les bétons à haute performance.

Selon les applications, le silicium est utilisé sous forme de morceaux (production des alliages aluminium-silicium) ou sous forme de poudre obtenue par broyage (production des silicones).

Le silicium pour électronique est obtenu à partir du silicium électrométallurgique, mais nécessite une étape chimique (purification réalisée sur des silanes) puis un ensemble de purifications physiques, avant le tirage des monocristaux.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end mills、Специальные режущие инструменты Пустотелое сверло ‘Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
AlumiiniPiiFosfori
C

Si

Ge


Yleistä
Nimi Pii
Tunnus Si
Järjestysluku 14
Luokka puolimetalli
Lohko p-lohko
Ryhmä 14, hiiliryhmä
Jakso 3
Tiheys 2,33×103 kg/m3
Kovuus 6,5 (Mohsin asteikko)
Väri tummanharmaa, sinertävä
Löytövuosi, löytäjä 1787, Antoine Lavoisier
Atomiominaisuudet
Atomipaino 28,0855 amu
Atomisäde, mitattu (laskennallinen) 111 pm
Kovalenttisäde 111 pm
Van der Waalsin säde 210 pm
Orbitaalirakenne [Ne] 3s2 3p2
Elektroneja elektronikuorilla 2, 8, 4
Hapetusluvut 4
Kiderakenne timanttirakenne
Fysikaaliset ominaisuudet
Olomuoto kiinteä
Sulamispiste 1687 K (1414 °C)
Kiehumispiste 3538 K (3265 °C)
Höyrystymislämpö 359 kJ/mol
Sulamislämpö 50,21 kJ/mol
Äänen nopeus 2200 m/s (20 °C) K:ssa
Muuta
Elektronegatiivisuus 1,90 (Paulingin asteikko)
Ominaislämpökapasiteetti 0,712 kJ/kg K
Lämmönjohtavuus (300 K) 149 W/(m×K)
Tiedot normaalipaineessa

Pii (lat. silicium) on puolimetalli, joka on maankuoren toiseksi yleisin alkuaine. Piin kemiallinen merkki Si on johdettu latinan sanasta "silex", joka tarkoittaa piikiveä. Piin CAS-numero on 7440-21-3.

[muokkaa] Esiintyminen luonnossa

Pii on maankuoren toiseksi yleisin alkuaine. Sen osuus on 25,7 % maankuoren massasta; yleisin alkuaine on happi, jota on 49,5 %. Piin tavallisimpia luonnossa esiintyviä yhdisteitä ovat piidioksidi SiO2 ja silikaatit, jotka koostuvat piistä, hapesta ja metalleista. Hiekassa ja kvartsissa on pääosin SiO2:a, savessa, asbestissa, kiilteessä, sarvivälkkessä, maasälvässä ja graniitissa puolestaan silikaatteja. Pii on pääkomponenttina eräissä meteoroidityypeissä sekä tektiiteissä, jotka ovat luonnossa muodostunutta lasia.

Monet arvostetut puolijalokivet ovat silikaattimineraaleja, kuten mm. ametisti, jaspis ja vuorikristalli. Puhdas pii on erittäin harvinaista luonnossa: sitä on tavattu vain satunnaisesti pieniä määriä vulkaanissa purkauksissa sekä sulkeumina kultahipuissa.

[muokkaa] Ominaisuuksia

Kiteisellä (puhtaalla, kiinteällä) piillä on metallinen kiilto ja sinertävä värisävy. Pii kuuluu samaan jaksollisen järjestelmän ryhmään kuin hiili ja muistuttaa sitä joiltakin kemiallisilta ominaisuuksiltaan. Pii on kuitenkin hiiltä passiivisempi. Tosin se reagoi halogeenien ja monien emästen kanssa. Useimmat hapot eivät vaikuta siihen, lukuun ottamatta typpihapon (HNO3) ja fluorivetyhapon (H2F2) seosta.

[muokkaa] Historia

Antoine Lavoisier kuvasi ensimmäisenä piin vuonna 1787. Humphry Davy erehtyi myöhemmin pitämään sitä yhdisteenä. Vuonna 1811 Gay Lussac ja Thénard onnistuivat todennäköisesti valmistamaan epäpuhdasta amorfista piitä kuumentamalla kaliumia (K) piitetrafluoridin SiF4 kanssa. Berzelius valmisti amorfista piitä vuonna 1824 käyttäen jokseenkin samanlaista menetelmää kuin Gay Lussac ja Thénard. Berzelius myös puhdisti tuotteensa.

[muokkaa] Käyttö

Piidioksidi on pääkomponenttina lasissa, sementissä ja keramiikassa. Puolijohteisiin tarvitaan puhdasta piitä, joka sitten seostetaan pienillä määrillä muita sopivia alkuaineita. Piikarbidi (SiC) on puhtaan piin ohella käytössä puolijohdetekniikassa. Silikonit ovat piin tärkeitä polymeerejä, joita käytetään mm. voiteluaineissa, liimoissa, saumaus- ja tiivistemateriaaleissa, rintaimplanteissa ja leluissa.

[muokkaa] Isotoopit

Piillä on yhdeksän isotooppia, joiden massaluvut ovat välillä 25-33. Si-28 (isotoopeista yleisin, 92,23%), Si-29 (4,67%) ja Si-30 (3,1%) ovat pysyviä. Piin puoliintumisajaksi määriteltiin lopulta noin 276 vuotta. Pii hajoaa ensin P-32:ksi (jonka puoliintumisaika on 14,28 vuotta), tämä puolestaan hajoaa S-32:ksi.

[muokkaa] Ihmisen ruokavaliossa

Pii on välttämätön luiden, nivelten ja mukopolysakkaridien (esim. kollageeni) muodostukselle ja puutos johtaa pitkien luiden epämuodostumiin. Piin parhaat lähteet ovat kokojyvävilja, juurekset ja muut kasvikset. Saannin tarpeen arvioidaan olevan välillä 21-46 mg/vrk. [1]

American Journal of Clinical Nutrition julkaisi vuoden 2002 toukokuun numerossaan tutkimuksen, jossa kartoitettiin koehenkilöiden nauttimia ruoka-aineita ja näiden sisältämää piin määrää.[2] Tulokset osoittivat, että olut vahvistaa luustoa, mutta myös että miehillä ravinnosta saatava piin määrä on huomattavasti suurempi kuin naisilla. Olut sisältää ohrasta peräisin olevaa piitä.

[muokkaa] Katso myös

[muokkaa] Lähteet

  1. Tohtori.fi artikkeli
  2. American Journal of Clinical Nutrition, Vol. 75, No. 5, 887-893, May 2002

[muokkaa] Aiheesta muualla


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end mills、Специальные режущие инструменты Пустотелое сверло ‘Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
14




4
8
2
Si
28,086
Räni

Räni on keemiline element järjenumbriga 14, mittemetall.

Lihtainena on ta tumehall metalse läikega kristalne aine.

Sümbol: Si (silicium)

Aatommass on 28,086 Järjenumber perioodilisussüsteemis on 14.

Stabiilseid isotoope on 3, massiarvudega 28, 29 ja 30.

Räni on hapniku järel levinuim element maakoores, moodustades 29,5% maakoore massist.


Räni oksüdatsiooniaste ühendeis on valdavalt +4. Peamine oksiid on ränidioksiid. Räni ühendid vesinikuga, silaanid, on tugevad redutseerijad.

[redigeeri] Füüsikalised omadused

Räni on pooljuht, mille elektrilised omadused sõltuvad väga tugevasti lisanditest.


Räni kuulub silikaatide ja ränidioksiidi koostisse ning on telliste, tulekindlate materjalide, klaasi, portselani, tsemendi ja teiste materjalide koostisosa.

Räni kasutatakse laialdaselt pooljuhtseadiste valmistamiseks elektroonikas.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end mills、Специальные режущие инструменты Пустотелое сверло ‘Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Silicio

De Wikipedia, la enciclopedia libre

Aluminio - Silicio - Fósforo
C
Si
Ge

General
Nombre, símbolo, número Silicio, Si, 14
Serie química Metaloide
Grupo, periodo, bloque 14, 3, p
Densidad, dureza Mohs 2330 kg/m³, 6,5
Apariencia Gris oscuro con un tono azul
Propiedades atómicas
Masa atómica 28,0855 uma
Radio medio 110 pm
Radio atómico calculado 111 pm
Radio covalente 111 pm
Radio de Van der Waals 210 pm
Configuración electrónica [Ne]3s² 3p²
Estado de oxidación (óxido) 4 (anfótero)
Estructura cristalina cúbica centrada en las caras
Propiedades físicas
Estado de la materia sólido (no magnético)
Punto de fusión 1687 K
Punto de ebullición 3173 K
Entalpía de vaporización 384,22 kJ/mol
Entalpía de fusión 50,55 kJ/mol
Presión de vapor 4,77 Pa a 1683 K
Velocidad del sonido __ m/s a __ K
Información diversa
Electronegatividad 1,90 (Pauling)
Calor específico 700 J/(kg*K)
Conductividad eléctrica 2,52 x 10-4 m-1·Ω-1
Conductividad térmica 148 W/(m*K)
potencial de ionización 786,5 kJ/mol
2° potencial de ionización 1577,1 kJ/mol
3° potencial de ionización 3231,6 kJ/mol
4° potencial de ionización 4355,5 kJ/mol
5° potencial de ionización 16091 kJ/mol
6° potencial de ionización 19805 kJ/mol
7° potencial de ionización 23780 kJ/mol
8° potencial de ionización 29287 kJ/mol
9° potencial de ionización 33878 kJ/mol
10° potencial de ionización 38726 kJ/mol
Isótopos más estables
iso. AN Periodo de semidesintegración MD ED MeV PD
28Si 92,23% Si es estable con 14 neutrones
29Si 4,67% Si es estable con 15 neutrones
30Si 3,1% Si es estable con 16 neutrones
32Si sintético 132 a β- 0,224 32P
Valores en el SI y en condiciones normales
(0 °C y 1 atm), salvo que se indique lo contrario.
Calculado a partir de distintas longitudes
de enlace covalente, metálico o iónico.

El silicio es un elemento químico no metálico situado en el grupo 14 de la tabla periódica de los elementos formando parte de la familia de los carbonoideos. Es el segundo elemento más abundante en la corteza terrestre (27,7% en peso) después del oxígeno. Se presenta en forma amorfa y cristalizada; el primero es un polvo parduzco, más activo que la variante cristalina, que se presenta en octaedros de color azul grisáceo y brillo metálico.

Características principales [editar]

Sus propiedades son intermedias entre las del carbono y el germanio. En forma cristalina es muy duro y poco soluble y presenta un brillo metálico y color grisáceo. Aunque es un elemento relativamente inerte y resiste la acción de la mayoría de los ácidos, reacciona con los halógenos y álcalis diluidos. El silicio transmite más del 95% de las longitudes de onda de la radiación infrarroja.

Aplicaciones [editar]

Se utiliza en aleaciones, en la preparación de las siliconas, en la industria de la cerámica técnica y, debido a que es un material semiconductor muy abundante, tiene un interés especial en la industria electrónica y microelectrónica como material básico para la creación de obleas o chips que se pueden implantar en transistores, pilas solares y una gran variedad de circuitos electrónicos.

El silicio es un elemento vital en numerosas industrias. El dióxido de silicio (arena y arcilla) es un importante constituyente del hormigón y los ladrillos, y se emplea en la producción de cemento portland. Por sus propiedades semiconductoras se usa en la fabricación de transistores, células solares y todo tipo de dispositivos semiconductores; por esta razón se conoce como Silicon Valley (Valle del Silicio) a la región de California en la que concentran numerosas empresas del sector de la electrónica y la informática.

Otros importantes usos del silicio son:

Historia [editar]

El silicio (del latín silex, sílice) fue identificado por primera vez por Antoine Lavoisier en 1787, y el elemento.

Abundancia y obtención [editar]

El silicio es uno de los componentes principales de los aerolitos, una clase de meteoroides.

Medido en peso el silicio representa más de la cuarta parte de la corteza terrestre y es el segundo elemento más abundante por detrás del oxígeno. El silicio no se encuentra en estado nativo; arena, cuarzo, amatista, ágata, pedernal, ópalo y jaspe son algunas de los minerales en los que aparece el óxido, mientras que formando silicatos se encuentra, entre otros, en el granito, feldespato, arcilla, hornblenda y mica.

El silicio comercial se obtiene a partir de sílice de alta pureza en horno de arco eléctrico reduciendo el óxido con electrodos de carbono a temperatura superior a 3000 °C:

SiO2 + C → Si + CO2

El silicio líquido se acumula en el fondo del horno de donde se extrae y se enfría. El silicio producido por este proceso se denomina metalúrgico y tiene una pureza superior al 99%. Para la construcción de dispositivos semiconductores es necesario un silicio de mayor pureza, silicio ultrapuro, que puede obtenerse por métodos físicos o químicos.

Los métodos físicos de purificación del silicio metalúrgico se basan en la mayor solubilidad de las impurezas en el silicio líquido, de forma que éste se concentra en las últimas zonas solidificadas. El primer método, usado de forma limitada para construir componentes de radar durante la Segunda Guerra Mundial, consiste en moler el silicio de forma que las impurezas se acumulen en las superficies de los granos; disolviendo éstos parcialmente con ácido se obtenía un polvo más puro. La fusión por zonas, el primer método usado a escala industrial, consiste en fundir un extremo de la barra de silicio y trasladar lentamente el foco de calor a lo largo de la barra de modo que el silicio va solidificando con una pureza mayor al arrastrar la zona fundida gran parte de las impurezas. El proceso puede repetirse las veces que sea necesario hasta lograr la pureza deseada bastando entonces cortar el extremo final en el que se han acumulado las impurezas.

Los métodos químicos, usados actualmente, actúan sobre un compuesto de silicio que sea más fácil de purificar descomponiéndolo tras la purificación para obtener el silicio. Los compuestos comúnmente usados son el triclorosilano (HSiCl3), el tetracloruro de silicio (SiCl4) y el silano (SiH4).

En el proceso Siemens, las barras de silicio de alta pureza se exponen a 1150°C al triclorosilano, gas que se descompone depositando silicio adicional en la barra según la siguiente reacción:

2 HSiCl3 → Si + 2 HCl + SiCl4

El silicio producido por éste y otros métodos similares se denomina silicio policristalino y típicamente tiene una fracción de impurezas de 0,001 ppm o menor.

El método Dupont consiste en hacer reaccionar tetracloruro de silicio a 950°C con vapores de cinc muy puros:

SiCl4 + 2 Zn → Si + 2 ZnCl2

Este método, sin embargo, está plagado de dificultades (el cloruro de cinc, subproducto de la reacción, solidifica y obstruye las líneas) por lo que eventualmente se ha abandonado en favor del proceso Siemens.

Una vez obtenido el silicio ultrapuro es necesario obtener uno monocristal, para lo que se utiliza el proceso Czochralski.

Isótopos [editar]

El silicio tiene nueve isótopos, con número másico entre 25 a 33. El isótopo más abundante es el Si 28 con una abundancia del 92.23%, el Si 29 tiene una abundancia del 4.67% y el Si 30 que tiene una abundancia del 3.1 todos ellos son estables. El Si 32 es radiactivo que proviene del decaimiento del argón. Su tiempo de semivida es aproximadamente de unos 132 años. Padece un decaimiento beta que lo transforma en P-32 (que tiene un periodo de semivida de 14.28 días).

Precauciones [editar]

La inhalación del polvo de sílice cristalina puede provocar silicosis

La estirilidad puede ser generada en el cuerpo de la gente que consuma silicio.=edgar gomez


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end mills、Специальные режущие инструменты Пустотелое сверло ‘Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Silicio estas kemia elemento en la perioda tabelo kies simbolo estas Si kaj kies atoma numero estas 14. Trivalenta metaloido, silicio estas malpli reakcia ol sia kemia analogo karbono.


La nomo "silicio" venas de la latina vorto silex, speco de ŝtono (Siliko). Laŭ pezo, 25,7% de la terkrusto estas silicio. En la forma de siliko, aŭ silicia dioksido, (SiO2), ĝi troviĝas en la krusto de la tero kiel sablo kaj kvarzo. Opaloj, ametistoj, kaj jaspoj estas formoj de kvarzo. Granito, asbesto, feldspato, argilo, kaj glimo estas silikataj mineraloj. Siliko fortigas plantajn trunketojn, birdajn plumojn, kaj iujn spongojn. Silikono estas alia silicia kombinaĵo, uzata por fari oleojn, grasojn, farbojn, kaj kaŭĉukojn.

En la moderna industrio, oni uzas silicion aŭ silician kombinaĵojn por fari vitron, ŝtalon, emajlojn, ceramikaĵojn, abrazilojn, kaj laserilojn. Hodiaŭ, silicio estas grava elemento en la faro de transistoroj, sunenergiaj piloj, kaj en icizita tekniko, kiel en la komputila industrio.

[redaktu] Ecoj

  • Atompezo: 28,086
  • Kemia Serio: aliaj metaloj
  • Kemia Grupo: 14(IVA)
  • Kemia periodo: 3
  • Masa denseco: 2328 kg/m3
  • Atoma denseco: 5,0x1028 atomoj/m3
  • Dureco: 6,5
  • VAN-DER-WAAL-a radiuso: 210 pm
  • Elektrona konfigurado: [ Ne ]3s2 3p2
  • Kristala strukturo: diamanta aŭ fac-centre kuba
  • Stato de materio: solidaĵo
  • Bolpunkto: 2355oC
  • Fandpunkto: 1410oC
  • Unumola volumeno: 12,06x10-6 m3/mol
  • Vaporiga hejto: 384,22 kJ/mol
  • Glaciiga hejto: 50,55 kJ/mol
  • Vapora premo: 4,77 Pa ĉe 1683 K
  • Elektronegativeco: 1,90 (skalo de Pauling)
  • Unumasa varmkapacito: 700 J/(kg*K)
  • Elektra konduktiveco: 2,52x10-4 /mohm
  • Termika konduktiveco: 148 W/(m*k)
  • 1-a joniga potencialo: 786,5 kJ/mol
  • 2-a joniga potencialo: 1577,1 kJ/mol
  • 3-a joniga potencialo: 3231,6 kJ/mol
  • 4-a joniga potencialo: 4355,5 kJ/mol
  • Rompiĝa elektra kampo: ~3x105 V/m
  • Dielektra konstanto: 11,9
  • Efektiva denseco de statoj en kondukta bendo: 2,8x1025
  • Efektiva denseco de statoj en valenta bendo: 1,04x1025
  • Elektrona afineco: 4,05 V
  • Energia bendbreĉo: 1,12 eV
  • Esenca koncentreco de portantoj 1,45x1016 m-3
  • Esenca Debye-a longo: 2,4x10-5 m
  • Esenca rezistiveco: 2,3x107 ohm m
  • Latisa konstanto: 5,43095
  • Koeficio de lineara termika pligrandiĝo: 2,6x10-6 K-1
  • Driva movebleco de elektronoj: 0,15 m2/V s
  • Driva movebleco de truoj: 0,045 m2/V s
  • Pligrandiĝo ĉe glaciiĝo: ~9%
  • Eltrovintoj: Antoine Lavoisier 1787, kaj Gay Lussac 1811

Pura kristala silicio havas grizan koloron, sed en la naturo, la elemento silicio troviĝas nur en kombinaĵoj. Silicio havas naŭ izotopojn.

En ĝia kristala formo, silicio havas metalan glaceon kaj grizan koloron. Ĝi estas frakasiĝema solidaĵo ĉe ĉambra temperaturo kiu fariĝas plasta ĉirkaŭ 900 o C. Elektre ĝi estas semikonduktaĵo, do povas esti foje izolaĵo, foje konduktaĵo. Ĝi bone konduktas hejton kaj sonon. Kaj ĝi flosas en sia propra likvaĵo.

Kvankam silicio estas relative inerta, silicio reakcias kun oksigeno, nitrogeno, la halogenoj kaj diluaj alkaloj, sed plej multaj (neoksidigaj) acidoj ne rekte efikas. Nitrata acido estas oksidiga al silicio.

Elementa silicio transmisias pli ol 95% da ĉia infraruĝa lumo. Sed malpuraĵoj en silicio, tiel kiel oksigeno, karbono, nitrogeno, boro, fosforo, kaj arseno, absorbas ĉe certaj fekvencoj en la infraruĝa. Silicio ne estas travidebla en ordinara videbla lumo.

[redaktu] Historio

Silicio (Latine silex, silicis signifata siliko) unue estis identigita de Antoine Lavoisier dum 1787 kaj estis poste mise identigita de Humphry Davy dum 1800 kiel kombinaĵo. Dum 1811 Gay Lussac kaj THENARD probable preparis malpuran amorfan silicion tra la hejtado de kalio kun silicia kvarflorido. Dum 1824 BERZELIUS preparis silicion uzante proksimume la saman metodon de Lussac. Berzelius ankaŭ purigis la produktaĵon per refoja lavado.

Ĉar silicio estas grava elemento en semikonduktaĵaj kaj alt-teknologiaj aparatoj, la alt-teknologia regiono Silicia Valo, Kalifornio nomiĝis laŭ tiu ĉi elemento.

[redaktu] Produktado

Silicio estas komerce produktata per hejtado de alte pura siliko en elektra forno per uzo de karbonaj elektrodoj. Ĉe temperaturoj super 1900o C, la karbono reduktas la silikon al silicio laŭ la kemia ekvacio:

SiO2 + C → Si + CO2

Likva silicio kolektiĝas ĉe la malsupro de forno, kaj ĝi dreniĝas kaj malvarmiĝas. La silicio tiel produktita nomiĝas metalurgie grada silicio kaj estas 99% pura. Dum 1997 metalurie grada silicio kostis proksimume $0,50/g.

[redaktu] Purigado

La uzo de silicio en semikonduktaĵaj aparatoj postulas multe pli altan purecon ol atingeblan per metalurgia silico. Historie kelkaj metodoj uziĝis produkti alte puran silicion.

[redaktu] Fizikaj Metodoj

Fruaj teknikoj por purigado de silicio baziĝis sur tiu fakto ke kiam silicio fandiĝas kaj tiam re-solidiĝas, la lasta parto kiu re-solidiĝas entenas la plejparton de la malpuraĵoj. La plej frua metodo de silicia purigado, unue priskribita en 1919 kaj lime uzita por fari radarajn komponantojn dum la unua mondmilito, miksis rompadon de metalurgia silicio kaj tiam parte dissolvadon de la silicia pulvoro en acido. Kiam rompita, la silicio fendiĝis tiel ke la pli malfortikaj malpuraĵ-plenaj regionoj estis ekstere de la rezulta kerno de silico. Rezulte, la malpuraĵ-plena silicio estis unue solvita dum traktado kun acido, kio postlasis pli puran produktaĵon.

En zona fandado, la unua metodo por purigado de silicio larĝe uzata en industrio, stangoj de metalurgia silicio hejtiĝis ĉe unu ekstremaĵo. Tiam, la hejtilo malrapide moviĝis laŭ la longo de la stango, tenante malgrandan longon de la fandiĝinta stango, dum la silicio malvarmiĝis kaj re-solidiĝis malantaŭ la fandiĝinta parto. Ĉar plejparto da malpuraĵoj tendencas resti en la fanda regiono anstataŭ re-solidiĝi,procezofine plejmultaj malpuraĵoj de la stango moviĝis al la ekstremaĵo kiu estis laste fandita. Tiu ĉi finaĵo fortranĉiĝis kaj forĵetiĝis, kaj la procezo re-fariĝis se oni deziris pli altan purecon.

[redaktu] Kemiaj Metodoj

Hodiaŭ, silicio puriĝas per konvertado al silicia kombinaĵo kiu povas pli facile puriĝi ol silicio mem kaj poste denove okazas konvertado de tiu silicia kombinaĵo reen al pura silicio. Triklora silano estas la silicia kombinaĵo plej ofte uzita kiel mezaĵo, kvankam silicia kvarklorido kaj silano ankaŭ uziĝas. Kiam tiuj ĉi gasoj blovas super silicio ĉe alta temperaturo, ili diskomponas al altpureca silicio kaj kloro. La gasa silicio tiam deponas sur la solidan silicion.

Ĉe la procezo de Siemens, alte pure siliciaj stangoj elmetiĝas al triklora silano ĉe 1150 oC. La triklora silano dekomponiĝas kaj deponas plian silicion sur la stango, laŭ la kemia ekvacio

2 HSiCl3 → Si + 2 HCl + SiCl4

Silicio produktita de tiu kaj similaj procezoj nomiĝas polikristala silicio. Polikristala silicio tipe havas malpuraĵan nivelon de 1 parto el miliardo (pemd) aŭ malpli.

Iam, DuPont produktis ultrapuran silicion per reakciado de silicia kvarklorido kun alt-pureca zinka vaporo ĉe 950oC, produktante silicio laŭ la ekvacio:

SiCl4 + 2 Zn → 2 ZnCl2.

Tamen, tiu ĉi procezo kaŭzis multajn praktikajn problemojn (ekz. solidiĝo de flankproduktita zinka klorido ŝtopis liniojn) kaj fine forlasiĝis favore al la procezo de Seimens.

[redaktu] Kristalizado

La procezo de Czochralski ofte uziĝas fari altpurecajn unuopajn kristalojn por uzo en solidŝtataj aŭ semikonduktaĵaj aparatoj.

[redaktu] Izotopoj

Silicio havas naŭ izotopojn, kun atomnumero de 25 ĝis 33. 28Si (la plej abunda izotopo ĉe 92.23%), 29Si (4.67%), kaj 30Si (3.1%)estas stabilaj, 32Si estas radioaktiva izotopo produktita per argona diseriĝo. Ĝia duonvivo, post multa disputado, determiniĝas esti proksimume 276 jaroj, kaj ĝi diseriĝas per beta elsendo al 32P (kiu havas duonvivon de 14,28 jaroj)kaj tiam al 32S.

[redaktu] Antaŭzorgoj

Grava pulma malsano konata kiel silikozo ofte okazis inter ministoj, ŝtontranĉistoj kaj inter aliaj, kiuj laboris en medio, kie grandkvante estiĝis, enspiriĝis silika pulvoro.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end mills、Специальные режущие инструменты Пустотелое сверло ‘Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()


beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

缩写 abbreviation
美英加陆军规格 ABC-Army-STD
美英加海军规格 ABC-Navy-STD
消字膏 abrasive paste
方向突变 abrupt change in direction
横坐标 abscissa
绝对尺寸 absolute size
交流电动机控制器 AC motor controller
交流电 AC(a-c,alernating current)
附件 accessory
累积公差 accumulated tolerance
精度,准确度 accuracy
准确线 accurate line
透明绘图胶片 acetate
梯形(爱克姆) Acme[screw]
对角视图 across corner view
对角 across corners
对边 across flats
对边视图 across flats view
横断木纹 across grain of wood
实际距离 actual distance
实际书法 actual drawing
实际配合 actual fit
实际内径 actual inside diameter
实际量度 actual measurement
图面尺寸 actual measurement on the drawing
实际分度区域,实际精确区域 actual minute area
实际零件 actual part
实际位置 actual position
实际尺寸 actual size
锐角 acute angle
齿冠 addeneum
齿冠图 addeneum circle
齿冠距离 addeneum distance
齿冠线 addeneum line
相加 adding
增列数据 additional data
增列资料 additional information
增列位置公差 additional position tolerance
增列公差 additional tolerance
胶带 adhesive tape
邻角 adjacent angle
邻近区域 adjacent area
邻接组件 adjacent component
邻棱 adjacent edge
邻线 adjacent line
邻接地图 adjacent map
邻接件 adjacent part
邻接件线 adjacent parts line
邻边 adjacent side
相邻视图 adjacent view
自由曲线规 adjustable curve
活动丁字尺 adjustable head T-square
调整点 adjustable point
自由曲线规 adjustable ruler
可调三角规 adjustable set wquare
广告面 advertising illustration
色透规,浓淡远近法 aerial perspective
航空照相 aerial photograph
鸟瞰图 aerial view
航空图 aeronautical chart
航测图 aeronautical map
美学 aestetics
逆理(木) against the grain
喷刷 air brush
飞机接线图 air craft wiring diagram
空线,电路 airline,base line
备接线 ajoining line
铝 AL(aluminum)
对齐尺寸线 aligned dimension lines
对齐制注尺寸法 aligned dimensioning
转正剖面 aligned section
对齐制 aligned system
转正的视图,对正的视图 aligned view
对准 alignment
列线图 alignment chart
列线图 alignment diagram
鳄齿连接器 alligator connector"
裕度 ALLOW(allowance)
容许蚗? allowable bearing
容许僆q allowable variation
裕度 allowance
纵剖木纹 along grain of wood
线的规格 alphabet of lines
字母顺序 alphabetice order
字母 alphabets
更改后尺寸 altered dimension
对错角 alternate angle
交变剖面线 alternate crosshatching
螺纹正规符号书法(美式) alternate light and heavy line method
变换法 alternate method
变换位置 alternate position
变换位置线 alternate position line
变换位置视图 alternate position view
共轭弓形 alternate segment
外错角 alternate-exterior angle
内错角 alternate-interior angle
交互排列 alternately spaced
交流电 alternating current
更改 alternation
侧视图的变换位置 alternative position for side view
高度 altitude
铝 aluminum
铝合金 aluminum alloy
美国标准 AMER STD(Am Std,American Standard)
美国压力管规号码 American code for pressure piping
美国书法(第三角法) American method
美国标准螺纹 American National screw thread
美国国家标准协会 American National Standard Institute(ANSI)
美国国家标准 American National Standard(ANS)
美国制投影(第三角投影) American projection
美国标准螺纹配合等级 American screwthread class
美国机械工程学会 American Society of Mechanical Engineers(ASME)
美国标准学会 American Standard Association
字格板 Ames instrument
字格板 Ames lettering instrument
布朗沙普线规 Ametican Wire Gage,Brown & Sharpe Gage
安倍计(电) ammeter
变量图表 amount of change chart
面角量 amount of divergence
放大电路 amplifier circuit
美国国家标准协会 AMSI(American National Standards Institute)
分析 analysis
分析图表 analytical chart
分析线图 analytical diagram
分析图 analytical graph
锚,固定器 anchor
固定螺栓 anchor bolt
固定板 anchor plate
固定螺椿 anchor stud
角 angle
极向角 angle
角度规 angle agage
中心角 angle at the center
角的测量 angle measure
弦角 angle of chord
圆周角 angle of cirumference
倾角 angle of dip
俯角 angle of elevation
倾斜角 angle of inclination
投射角 angle of projection
倾角 angle of slope
视角 angle of vision
螺纹理论深度 angular depth of thread
角尺寸 angular dimension
角度定位法 angular dimensioning
角度定位制 angular dimersioning system
成角透视,斜透视 angular perspective
角度关系 angular prelationship
角范围 angular space
单斜面 angular surface
角公差 angular tolerance
角度转换 angular transformation
折角管 angular tube
倾斜度 angularity
不等角图 anisometric drawing
退火 annealing
注解 annotation
环状公差域 annular tolerance zone
圆环 annular torus
环状带 annular zone
圆环 annulus
阳极 anode
美国标准正规符号(螺纹) ANSI regular symbol
美国标准简化符号(螺纹) antarctic circle
南极圈 antenna
天线 anticlockwise
反时针方向 anvil
核准 AOP(approve)
铁点 apex
视图上的交点 apparent intersection
核准 APPD(approved)
装饰性笔划 appendge
附录 appendix
附录表 appendix table
承招图,核准图样 approved plan
校核者,核准者 approving authority
齿形近似书法 approximate circlearc method
近似曲线 approximate curve
八圆心近似椭圆 approximate eightcentered ellipse
四圆心近似椭圆 approximate fourcentered ellipse
近似长度 approximate length
近似值 approximation
护裙 apron
阿拉伯数字 Arabic numerals
假定标度 arbitrarv scale
任意直线 arbitrary line
假定原点 arbitrary origin
心轴 arbor
圆弧 arc
弧心 arc center
弧长 arc length
弧线 arc line
电弧熔接 arc weding
拱 arch
阿基米得曲线 Archimedean curve
阿基米得蜗线 Archimedean spiral
建筑师 architect
建筑模板 architect guide template
建筑图字体 architect lettering
建筑学 architectonics
建筑师用比例尺 architect's scale
建筑布局 architectural composition
建筑制图员 architectural draftsman
建筑图 architectural drawing
建筑草图 architectural freehand drawing
建筑透视图 architectural perspective
建筑计书 architectural plan
建筑示意图 architectural presentation drawing
建筑工 architectural work
建筑学 architecture
建筑制图 architecture drawing
圆弧规 arcograph
北极圆 arctic circle
面积,区域 area
面积条图 area bar chart
面积图 area chart
面积图 area diagram
面积图 area graph
算术分度图 arithmetic graph
算术标度 arithmetic scale
算术平均(数) arithmetical average
算术分度水平坐标 arithmetical horizontal scale
算术内 插法 arithmetical interpolation
阿肯萨斯磨石 Arkansas knife piece
臂 arm
角之一边 arm of angle
电枢 armature
电枢槽 armature slot
(美国)陆海军用标准零件 Army-Navy standard parts
排列 ARR(arrange)
布局,配置,装置 arrangement
视图的排列 arrangement of views
配置图 arrangement plan
箭头边,箭头所指的一面(熔接) arrow side
加注箭头 arrowed[head]
不用箭头注尺寸 arrowless dimensioning
附箭头的线 arrowline
特软橡皮 artgum
美国标准的配合种类 ASA fits
美国标准符号 ASA svmbol
美国标准螺纹符号 ASA thread symbol
美国标准学会 ASA(American Standard Association)
石棉 asbesto
出头部分(字母) ascender
美国机械工程学会锅炉法规 ASME boiler code
美国机械工程学会 ASME(American Society of Mechanical Engineers)
非球面 aspheric surfac
汇集数据 assemble all data
装妥零件 assembled parts
组合,装配 assembling
装配螺栓 assembling bolt
装配程序图 assembling process chart
组合,装配,总成(组合件) assembly
装配表 assembly chart
组合图,装配图 assembly drawing
组合剖面 assembly drawing number
组合图,装配图 assembly print
组合剖面 assembly section
组合图,装配图 assembly sheet
组合草图,装配草图 assembly sketch
组合工作图 assembly working drawing
假定原点 assumed origin
组合,装配,总成(组合件) ASSY(assembly)
非对称形体 asymmetrical feature
不对称 asymmetry
渐近线 asymptote
渐近曲线 asymptotic curve
附件 attachment
自动 AUTO(automatic)
自动绘图机 automated drafting
正图纸(晒图) autopositive paper
辅助 AUX(auxiliary)
辅锥 auxiliary cone
辅助割面 auxiliary cutting plane
辅助割面 auxiliary cutting surface
参考尺寸 auxiliary dimension
前辅助视图,立面辅助视图 auxiliary elevation
辅助图 auxiliary figure
辅线 auxiliary line
辅助俯视图 auxiliary plan
辅助投影面 auxiliary plane
辅助投影面 auxiliary plane of projection
辅助位置 auxiliary position
辅助投影 auxiliary projection
辅助刻度 auxiliary scale
辅助面 auxiliary surface
辅助视图 auxiliary view
复辅助视图 auxiliary-adjacent auxiliary view
可用范围 available space
平均曲率 average curavature
平均偏差 average deviation
平均直径 average diameter
避免区域 avoid zone
美国线规 AWG(Awg,American Wire Gage,Brown &Sharpe Gage)
轴角 axial angle
轴线的平面 axial plane
摆T,轴向偏转 axial runout
轴向剖面 axial section
轴线 axis
横坐标轴 axis of abscissa
锥轴 axis of cone
纵坐标轴 axis of ordinate
旋转轴线 axis of revolution
旋转轴线 axis of rotation
对称轴 axis of symmetry
视轴 axis of vision
不等角模板 axolipse template
立体正投影图 axonometric drawing
立体正投影图 axonometric projection
立体正投影草图 axonometric sketching
组合,装配,总成(组合件) AY(assembly)
方位角,方位,地平经度 azimuth
方位等距图表 azimuthat equidistant chart
布朗沙普线规 B & S gage (Brown & Sharpe gage)
韦氏细螺纹 B S F thread(British Standard Fine thread)
巴氏合金 BAB(bab,Babbit)
背圆锥 back cone
背圆锥角 back cone angle
后视图 back elevation
后视图 back view
背后熔接 back weld
电木 backelite
字母间的空白 background area
后倾角 backward inclination
滚珠轴承 ball bearing
件号圆圈 balloon
加注件号圆圈 ballooning
轻木 balsa wood
条形图表 bar chart
条形图表 bar graph
滚筒磨光 barrel finishing
巴斯键 Barth key
底,底边,底面 base
底角 base angle
基圆 base circle
底面边视图 base edge
底面 base face
底边,基线,根线(螺纹),空线(电路),底线(字法) base line
锥底 base of cone
基面 base plane
基极(电),底座剖面 base section
基面 base surface
木线(电),基线 baseline
基线注尺寸法 base-line dimensioning
地下室平面图 basement plan
基准角度法(圆锥度公差) basic angle method
基准角度公差制 basic angle tolerancing system
基本计算尺寸 basic calculate size
基础图表 basic chart
理想余隙 basic clearance
原色 basic color
基本数据 basic data
基本设计 basic design
基准直径法 basic diameter method
理想尺寸 basic dimension
图学逻辑 basic drawing logic
螺纹基本形式 basic form of thread
基孔制 basic hole system
基本数据 basic information
基线注尺寸法 basic line
螺纹基本基本大径 basic major diameter
基轴制 basic shaft system
基本尺寸,理想尺寸 basic size
基准锥度法(锥度公差) basic taper method
螺纹基本形式 basic thread form
基本公差 basic tolerance
熔接基本符号 basic weld symbol
海图 bathymetric chart
歪图 batter
滚球轴承 BB(ball bearing)
中心距离 BC(between centers)
孔位圆 BC(bolt circle)
灯塔,标志 beacon
联珠熔接 bead weld
梁规 beam compass
方位,方向,轴承 bearing
方位及坡度 bearing and slope
方位角 bearing angle
承板 bearing plate
承面 bearing surface
插承接合 bell-and-spigot joint
弯头 bend
弯曲裕度 bend allowance
折线,弯曲线,转向线 bend line
曲板 bend plate
弯曲半径 bend radius
弯曲离隙 bend relief
弯折图 bending diagram
曲架 bent
曲板 bent plate
中心距离 between center
斜角,切角,斜齿轮,斜轮 bevel
斜角面 bevel face
斜齿轮 bevel gear
测角仪 bevel protractor
测口熔接 bevel weld
斜棱 beveld edge
伯明翰规 BG(Birmingham centers)
勃氏硬度 Bhn(BH,Brinell hardness)
双凸面 biconvex
双向公差制 bilateral system of limits
双向公差 bilateral tolerance
双向公差制 bilateral tolerance system
材料单 bill of material
定位头 binding head
鸟瞰图 bird's eye perspective
鸟瞰图 bird's eye view
伯明翰线号规 Birmingham wire gage
平分 bisect
平分线 bisector
基线 BL(base line)
黑墨水 black indian ink
黑白图 black-and white graph
黑白图 black-and-white chart
黑白图 black-and-white diagram
黑白复印 black-and-white reproduction
涂黑 blackened -in
黑色发蓝 blackening
黑体字 blackface letter
黑线图 black-line print
铅笔浓度,黑度 blackness
鸭嘴笔叶片 blade of pen
鸭嘴笔 blade ruling pen
空白区域 blank area
空白范围 blank space
未贯穿的孔,盲孔 blind hole
未贯穿的贯穿螺孔,盲螺孔 blind tapped hole
方块图 block chart
方块图 block diagram
方块型 block form
大楷字体 block letter
布图 block out
配置图 block plan
附加表 block supplementary
吸墨纸 blotter
吸墨纸 blotting paper
蓝 图 blue print
晒蓝图器 blue print apparatus
晒图纸 blue print paper
晒图 blue printing
晒图机 blue printing machine
发蓝 blueing
蓝图分析 blueprint analysis
识图,读图 blueprint reading
钝角 blunt angle
体对角线 body diagonal
体炉管 boiler tube
浓,黑,粗 bold
圆点 bold dot
粗线 bold line
黑体数字 bold type figure
黑体字 boldface letter
螺栓 bolt
孔位圆 bolt circle
外螺纹 bolt thread
圆心片 bone center
加偿公差 bonus tolerance
边框 border line
大鸭嘴笔,边框,鸭嘴笔 border pen
搪孔 bore
搪孔 boring
搪床 boring mill
凸面(圆柱形凸起) boss
墨水瓶座 bottleholder
数字底线 bottom edge of digit
字母底线 bottom edge of letter
底面 bottom surface
三攻螺丝攻 bottom tap
仰视图 bottom view
三攻螺丝攻 bottoming tap
边界,边框 boundary
主要尺寸 boundary dimensions
要项 boundary element
边界线 boundary line
边界面 boundary surface
外缘线,边线 bounding line
弹簧圆规,小圆规 bow compass
弹簧分规,小分规 bow divider
弹簧圆规或分规 bow instrument
上墨弹簧圆规 bow pen
铅笔弹簧圆规 bow pencil
弹簧分规 bow spacer,bow divider
方箱法 box construction
加边框 boxing
方箱法 boxing method
方箱法 box-method
蓝图 BP(blueprint)
英国标准 BR STD(British Standard)
括号 brackets
字格三角板 Braddock-Rowe triangle
分路(电) branch circuit
黄铜 brass
黄铜管 brass pipe
英国铜匠螺纹 brass thread
宽度 breadth
箭头的转折 break in the arrow
折断线 break line
分解 breakdown
炮闩螺纹 breechblock thread
轴承 BRG (bearing)
光面钢 bright steel
辉度 brightness
明线 brilliant line
明点 brilliant point
高级绘图纸 Bristol paper
B.A.螺纹 British Association(B.A.)thread
韦氏细螺纹 British Standard Fine thread
英国标准管螺纹 British Standard pipe thread
英国标准线规 British Standard wire gage
英国标准局 British Standards Instiution
拉孔 broaching
拉床 broaching machine
有缺口的圆 broken circle
虚线,断线 broken line
中断视图 broken view
断裂剖面,局部剖面 broken-out section
青铜 bronze
布朗沙普线规 Brown & Sharpe gage
棕 图 brown print
刷子,灌木林 brush
洒点阴影法 brush-stipple shading
青铜 BRZ (bronze)
英国标准 BS(British Standard)
基本尺寸,理想尺寸 BSC(basic size)
英国标准局 BSI(British Standards Institution)
韦氏粗螺纹 BSW(British Standard Whitworth thread)
凹凸板 buckle plate
擦光 buffing
簇,丛(地图) buft
房屋地区图 building plot
笔附研心器 built-in lead sharpener
滚筒打磨 bumbling
浮漂 buoy
压光 burnishing
衬套 bushing
对头纹链 butt hinge
对接 butt joint
对口熔接 butt weld
翼形螺帽(元宝螺帽) butterfly nut
蝶阀 butterfly valve
船股线,船尾线 buttock lines
扁圆头 button head
压痕接缝 button punched standing seam
扁圆头螺栓 buttonhead bolt
锯齿形螺纹 buttress thread
对口熔接接头 butt-welding fitting
伯明翰线规 BWG(Bwg,Birmingham Wire Gage)
青铜 BZ(bronze)
C形夹 C - clamp
中心距离 C to C = C to c = center to center
凿平 C(chipping)
半斜图 cabinet drawing
半斜投影 cabinet projection
缆线 cable
地籍图 cadastral map
计算 calculating
计算器 calculating machine
计算器 calculator
余隙配合 calearance fit
铜板纸 calendered pape
卡尺 caliper
凸轮,轗 cam
曲弧度 camber
弧面角,外倾角 camber angle
弧面曲线 camberline
管帽 cap
大楷字母高度线 cap line,capital line
有头螺帽 cap nut
有头螺钉 cap screw
盖瓥s接插头(管) cap stripconnector
电容器 capacitor
大楷字母 capital letter
大楷字母高度线 capital line
四氯化碳 carbon tetrachloride
碳化 carburizing
厚纸板 cardbroad
直角坐标 Cartesian coordinates
地图制图 cartography
草图 cartoon
厚图纸 cartridge paper
成套绘图仪器 case instruments
表面硬化 case-hardening
铸铁 cast iron
铸件 cast part
栓槽轴 castellated shaft
铸件图 casting drawing
铸造公差 casting tolerance
铸件 castings
铸铁接头 cast-iron fitting
铸铁管 cast-iron pipe
堡形螺帽 castle nut
产品目录 catalogue
产品说明图 catalogue illustration
阴极(电) cathode
等斜图 cavalier drawing
等斜投影 cavalier projection
柱坑,埋头孔,平头 C'bore(CBORE,counterbore)
中心距 C-C(center to center)
冷拉 CD(cold drawn)
连柱坑钻头 CDRILL(counterdrill)
折痕 cease
度,程度 CEG(degree)
赛璐珞边尺 celluloid-edge scale
中心距离 center
中心距离 center distance
中心距量规 center distance gage
中心孔钻 center drill
中心线 center line
曲率中心 center of curvature
形状中心 center of figure
透视图中心 center of perspective
视点 center of projection,station point
相信中心 center of similarity
对称中心 center of symmetry
视中心 center of vision
中心冲 center punch
求圆心规 center square
圆心板 center tack
定心(自由度) centering
中心面 centerplane
中心距离 center-to-center distance
中间螺钉弹簧圆规 center-wheel bow
公分 centimeter
中心角 central angle
中央轴线 central axis
中心平面 central plane
集中型级别(爱克姆螺纹) centralizing class
中心 centre,center
设计课 cesign staff
公毫(百分之一公克) CG(cg,centigram)
校对 Ch(CHK,check)
标注连续尺寸 chain dimensioning
连续尺寸 chain dimensions
链线 chain line
全部刻度的尺 chain scale,engineer fully divided scale
链线 chain-dotted line
去角 CHAM(chfr,chamfer,c)
去角,倒角 chamfer
去角大小 chamfer angle
切弧 chamfer arc
切弧 chamfer curve
去角线,倒角线 chamfer line
更改栏,修正栏 change-record block
槽形钢 channel
字符,字母或数字 character
字高 character height
线的属性 character of line
特性曲线 characteristic curve
特性形状 characteristic shape
图表 chart
展览图表 chart for display
生产图表 chart for production
测圆器 chartometer
校对 check
防松螺栓 check bolt
校对记号 check mark
锁紧螺帽 check nut
止回阀 check valve"
校阅? checker
校对 checking
校对量规 checking gage
总工程师 chief engineer
制图方任 chief-draftsman
中国国家标准 Chinese National Standards
锌白 Chinese white,zinc white
凿平,切屑 chip
楔形笔 chisel edge
楔形笔尖(铅笔) chisel point
弦 chord
弦长 chord length
弦长 chordal distance
铸铁 CI(cast iron)
铸铁管 CIP(cast-iron pipe)
零 cipher
圆 cir(CIR,circle)
圆 circle
圆弧 circle arc
圆弧 circle curve
圆弧模板 circle curve template
圆及共轭径法(画椭圆) circle method for conjugate diameter
隘圆 circle of gorge
圆模板 circle template
线路(电) circuit
断路器(电) circuit breaker
线路断流板(电) circuit breaker panel
分电跃 circuit distribution center
线路图 circuit drawing
线路负荷(电) circuit load
圆形 circular
圆弧 circular arc
圆拱 circular arch
圆形跃中心线 circular center line
圆锥 circular cone
圆弧曲线 circular curve
圆柱 circular cylinder
圆柱坐标 circular cylinder coordinates
圆准线 circular directris
圆形元线 circular element
圆形双曲面体 circular gyperboloid
圆形部分 circular portion
圆周偏转 circular runout
圆形剖面 circular section
圆弧三角形 circular triangle
截圆锥 circular truncated cone
圆形视图 circular view
<>圆度 circularity
外心 circumcenter
外接圆 circumcircle
圆周,周围,周边 circumference
外接圆 circumscribed circle
外切多边形 circumscribed polygon
外切正方形 circumscribing square
市区图 city plat
城市分区图 city subdivision
土木工程师 civil engineer
土木制图 civil engineering graphics
土木工程师比例尺 civil engineer's scale
中心线 CL(center line)
公勺(百分之一公升) CL(cl,centiliter)
清洁图面 clarification of drawing
清晰 clarity
清楚尺寸 clarity dimension
1级配合 class 1
1级外螺纹 class 1A
1级内螺纹 class 1B
加工级别 class of finish
配合种类,配合等级 classes of fits
分类图表 classification chart
面的分类 classification of surfaces
爪状板连接器 claw-plate connector
清洁剂 cleaning agent
软橡皮 cleaning rubber
空隙,间隙,余隙 clearance
穿通孔 clearance hole
已开发地 cleared land
夹持角钢 clip angle
夹纸板 clip board
顺时针 clockwise
高精度 close accuracy
紧密配合 close fit
紧密插口接头 close nipple
紧密转动配合 close running fit
紧密滑动配合 close sliding fit
精密公差 close tolerance
闭合接触器 closed contact
闭合曲线 closed curve
无生命环 closed torus
细分刻度 close-divided
密吻合面 close-fitting surfaces
精密公差中心距 closely toleranced center distance
拭笔布 clpoth penwiper
夹持爪(自动铅笔) clutch jaw
公分(百分之一公尺) CM(cm,centimeter)
中国国家标准 CNS(Chinese National Standards)
精螺纹级 coarse series thread
精螺纹级 coarse-thread series
同轴线 coaxial
同轴圆柱体 coaxial cylinder
同轴线度 coaxility
法规,码,代码,符号 code
标记字母 code figure
材料符号 code for materials
金属材料剖面线的区别 code for metals
管内输送物代号 code line symbol
规号 code number
材料剖面线的区别 code section lining
符号区别 code type
线圈 coil
螺旋弹簧 coil-spring
压印 coin
符合,重合 coincide
重合线 coincident line
中心重合 coinciding center
垒合中心线 coinciding center line
冷色 cold color
冷拉 cold drawn
冷轧钢 cold-rolled steel(CRS)
列表组合图 collective assembly drawing
列表图 collective drawing
列表零件图 collective singlepart drawing
集极(电) collector section
色彩浓度 color intensity
色彩明度 color value
色彩墨水 colored ink
色柢 colored paper
颜色铅笔 colored pencil
色片 colored sheet
着色硬化 color-harden
柱 column
柱条图表 column chart
消失点法(透视图) combination method
视图的排列 combination of views
组合角尺 combination set
组合角尺 combination square
零件装配集合图 combined drawing
正负复合符号 combined plus and minus sign
复合符号 combined symbol
通用规号,商品标记 commercial designation
商用图 commercial drafting
商用图 commercial drawing
商用哥德体字母 commercial Gothic letter
方格纸 commercial graph paper
商品限界(尺寸) commercial limits
商用零件(市售零件) commercial parts
公共边 common arm
公轴线 common axis
公有中心线 common center line
公有基准面 common datum surface
公有元线 common element
常用分数 common fraction
分数制 common fraction system
分数尺寸 common fractional size
共线,交线 common line
公垂线,公法线 common normal
公垂线 common perpendicular
共点,交点 common point
共点法 common point method
长椽 common rafter
公切线 common tangent
修正尺寸 common trimmed size
产品号码 company number
间隔,小格 compartment
圆规 compass
圆规附件 compass attachment
圆规架 compass frame
圆规用起子 compass key
余角 complementary angle
余弧 complementary arc
余角法 complementary-angle method
余角法 complementary-line method
全辅助视图 complete auxiliary elevation
完全小数制 complete decimal system
画出完芈外形 complete delineation
全转 complete revolution
完整螺纹 complete thread
全视图 complete view
竣工图 completion drawing
复曲面 complex curved surface
组件 component
成分 component parts
字母组合 composition in lettering
复合条图表 compound bar chart
复曲线 compound curve
压缩机 COMPR(compressor)
狭体字 compressed letter
挤压接合 compression joint
压塑 compression molding
压缩弹簧 compression spring
计算图表 computation chart
计算草图 computation sketch
计算器 computer
计算机立体投影 computer general pictorial projections
计算机图学 computer graphics
凹,凹面 concave
同心圆法 concentric circle method
同心圆 concentric circles
同心椭圆 concentric ellipses
同心度 concentricity
同心度公差 concentricity tolerance
合一 concide
混凝土 concrete
电容器,冷凝器 condensor
通路(电) conducting pathway
导缆 conductor cable
圆锥形,圆锥体 cone
准锥面 cone director
圆锥台 cone frustum
射线锥 cone of raw
直圆锥 cone of revolution
圆锥形影 cone projection
形象,形态,状态 configuration
全等平面图形 congruent plan figures
锥曲面 conic curved surface
圆锥螺旋体,圆锥螺旋面 conic helicoid
圆锥螺 旋线 conic helix
二次曲线模板 conic section template
圆锥曲线,二次曲线,割锥线 conic sections
圆锥形体 conic shape
圆锥锥度 conic taper
圆锥形盘旋面 conical convolute
圆锥形螺旋线 conical helix
圆锥形斜螺旋体 conical oblique helicoid
锥形投影 conical projection
圆锥形直螺旋体 conical right helicoid
圆锥面 conical surface
割锥线,圆锥曲线,二次曲线 conics
圆锥角 coning angle
共轭轴线 conjugate axes
共轭曲线 conjugate curves
共轭径 conjugate diameter
接线夹 connecting clip
连接线 connecting line
接线图 connection diagram
接地 connection to ground
连接件 connector
锥曲面体,劈锥面 conoid
连续元线 consecutive elements
连续点 consecutive points
结构点,构造图 construction drawing
作图线,构造材料 construction line
建筑材料,构造材料 construction material
结构平面图 construction plan
结构图 constructional drawing
接触开关 contact switch
转折切割平面 contiguous cutting planes
连续二等分法 continued bisection process
连续曲线 continuous curve
连续尺寸 continuous dimensions
实线 continuous line
连续色调 continuous tone
连续色调描阴,深淡阴影法 continuous tone shading
不规则曲线,波形线 continuous wavy line
轮廊,外形,等高线 contour
轮廓元线 contour elemnet
等高线区间 contour interval
外形线,等高线 contour line
等高线地图 contour map
万向鸭嘴笔 contour pen
熔接表面形状符号 contour symbol
契约图,发包图 contract drawing
缩尺 contraction scale
包工,承包人 contractor
反曲 contrary flexure
对比(色彩) contrast
颜色对比 contrast of color
控制线路(电) control circuit
折断习用书法 conventional break
习用交线 conventional intersection
习用方法 conventional method
习用画法 conventional practice
习用表示法 conventional representation
习用符号 conventional sign
习用符号 conventional symbol
简便方法 conventional treatment
简化 conventionalizing
换算表 conversion table
凸,凸面 convex
凸多边形 convex polygon
凸立体 convex solid
盘旋面 convolute
双叶盘旋面 convolute of two nappes
盘旋面 convolute surface
盘旋变口体 convolute transition
坐标 coordinate
坐标轴 coordinate axis
坐标网格线 coordinate division
价格点法 coordinate method
方格纸 coordinate paper
坐标面 coordinate plane
切合,上模箱 cope
同平面 coplanar
铜 copper
铜合金 copper composition
铜管 copper pipe
铜板 COPPL(copper plate)
摹图,抄图 copying drawing
复印法 copying method
心型,砂心 core
心型箱,砂心箱 core core box
心型座 core print
铸孔 cored hole
软林 cork
角 corner
转角接合 corner joint
飞檐与屋面斜度 cornice & pitch of roof
关系尺寸 correlation of dimensions
同位角 corresponding angle
对应投影 corresponding projection
对应迹 corresponding trace
栓 cotter
开口销 cotter pin
相似件,相对件 counter parts
柱坑 counterbore
柱坑孔 counterbored hole
反转  counterevolution
反转  counterrotation
锥坑 countersink
埋头 countersunk head
埋头铆钉 countersunk head rivet
埋头铆钉 countersunk head screw
锥坑 孔 countersunk hole
管接头,联结器 coupling
书面纸 cover paper
牛角体 cow's horn
周节 CP(circular pitch)
牛皮纸 craft paper
杠架,板条箱 crate crest
<> crest
螺纹大径 crest diameter
螺纹大径公差 crest diameter tolerance
螺纹大径公差符号 crest diameter tolerance symbol
螺纹<>线 crest line
曲合,折迭,卷缩 crimp
临界公差 critial tolerance
关键的,重要的 critical
关键尺寸 critical dimension
临界面 critical plane
转向点 critical point
独立线(电) critical wire
十字形,十字接头,四通 cross
横割 cross cutting
横剖面 cross section
阴线区域 crosshatched area
剖面线,科行纹线 crosshatching line
交叉 crossing
方格纸 cross-section paper
横 剖面形状 cross-sectional shape
隆重起 crown
堡形螺帽 crown nut,castle nut
中心距 CRS(centres)
冷轧钢 CRS(cold-rolled steel)
碳钢 CS(carbon steel)
铸钢 CS(cast steel)
锥坑 C'sink(countersink)
锥坑 csk(CSK,countersink)
对面锥坑 CSK-O(countersink other side)
铸件 CSTG(castings)
立方体 cube
耕作地 cultivated land
累积公差 cumulative tolerance
杯状接头 cup joint
曲率 curvature
曲线 curve
曲线长 curve length
曲线板,云形板 curve plate
曲线规 curve ruler
曲准线 curved diretrix
曲线 curved line
曲线规 curved rule
曲面体 curved solid
曲线笔划(字母) curved stroke
曲面体 curved surface
成套曲线板 curves
曲准线 curvilinear directrix
曲元线 curvilinear element
曲动线 curvilinear generatrix
曲线计 curvimeter
尝试法 cut and try method
截口 cut section
剖面 cut surface
切螺纹 cut thread
割面线 cutting line
割面 cutting plane
割面线 cutting plane line
割面法(求交线) cutting-plane method
割面符号 cutting-plane symbol
割球法(求交线) cutting-sphere-method
C形垫圈 C-washer
旋转拋物线面 cyclic paraboloid
圆内接四边形 cyclic quardrilateral
摆u cycloid
摆u齿轮 cycloidal gear
圆柱 CYL(cyl,cylinder)
柱,圆柱 cylinder
圆柱轴线 cylinder axis
圆柱底 cylinder bottom
基准圆柱 cylindrical datum
圆柱体配合 cylindrical fit
柱形螺旋体 cylindrical helicoid
柱形螺旋体 cylindrical helix
柱形斜螺旋体 cylindrical oblique helicoid
柱形直螺旋体 cylindrical right helicoid
圆柱体 cylindrical surface
圆柱形公差域 cylindrical tolerance zone
圆柱度 cylindricity
圆柱性面 cylindroid
直流电动机控制器 D C motor controller
压铸件 D cast,die casting
直径 D(diameter)
阴暗面 dark face
颜色加深,线条加粗 darken
短划 dash
虚线圆 dashed circle
虚线 dashed line
分号,分件号 dashed number
数据 data
曰期 date
基准 datum
基准尺寸注法 datum dimensioning
基准边 datum edge
基准形态 datum feature
基准识别符号 datum identifying symbol
基准平面 datum level
基准线 datum line
基准平面 datum plane
基准点 datum point
基准面 datum surface
基准轴线 datumaxis
制图室 dawing office
直流电 DC(d-c,direct current)
静负荷 dead load
洁白 dead white
构想草图 deagrammatic sketch
十边形 decagon
十边形落叶林 deciduous trees
小数 decimal
小尺寸注法 decimal dimensioning
小数当量 decimal equivalent
分数之小数当量 decimal equivalent of fraction dimensions
分数小数并用制 decimal fraction system
小数点 decimal marker
度的小数 decimal parts of a degree
小数倍数 decimal places
小数点 decimal point
小数刻度 decimal scale
小数尺寸 decimal size
小数制 decimal system
偏差,偏角 declinatin
斜面倾斜 declivity
装饰 decoration
减低 decrease
不足面积 deficit area
指定转折(熔接) definite break
齐头线(斜纹线) definite end lines
偏向角度 deflection angle
度,程度 degree
硬度(铅笔) degree mark
弯度 degree of curvature
偏心度 degree of hardness
度数符号 deletion
删除 delineate
画轮廊 delineation
分隔线 demarcation
挂图,展示图 demonstration
小图纸 demy paper
名数 denominate number
分母 denominator
经距 departures
因变数 dependent variable
下陷 depression
深度 depth
深度轴线 depth axis
深度方向 depth direction
测深规 depth gage
测深分厘卡 depth micrometer
去角深度(熔接) depth of chamfering
钻孔深度 depth of drill
拋物线深度 depth of parabola
熔接槽深度 depth of preparation
预钻孔深(攻螺纹用) depth of tap drill
螺孔深度 depth of tapped hole
螺纹深度 depth of thread
螺纹大小径间隔 depth of thread spacing
深度尺 depth rule
伸尾部分(字母) descender
描绘 describe
画圆,动圆 describing circle
画法几何,投影几何 descrip tive geometry
注释,说明 descriptive note
设计 design
设计图表 design chart
设计图表 design drawing
设计工程师 design engineer
设计图表 design layout
设计字法(建筑) design lettering
设计尺寸 design size
设计草图 design sketch
说明 designation
设计者 designer
详细,细目,零件 detail
零件图,群图 detail drawing
零件图号 detail drawing number
绘图纸 detail paper
详细图 detail plan
零件蓝图 detail print
零件图 detail sheet
详细草图 detail sketch
细部剖面 detailed section
二极检波器(电) detctor diode
岐路 detour
可展开者 developable
展开,展开图 developed view
展开图 development
偏差,尺寸差,偏向 deviation
直径 DIA(diameter)
对角线 DIAG(diagonal)
线图 DIAG(diagram)
对角线 diagonal
对角分割 diagonal division
对角面 diagonal plane
斜有分划心 diagonal scale
线图,图 diagram
线图,图 diagram drawing
构想草图 diagrammatic arragnement
线图图表 diagrammatic chart
线图形式 diagrammatic form
单线管系图 diagrammatic piping drawing
单线表示法 diagrammatic representation
绘图器,分度尺 diagraph
针盘比测器 dial compartor
针盘指示器 dial indicator
直径 diameter
影印法 diaxo process
模,螺模 die
数元 digit
二面角 dihedral angle
颜色冲淡 diluting of color
尺寸 DIM(dimension)
尺寸,尺度,因次,度维 dimension
尺寸数字 dimension figure
尺寸形式 dimension forms
加方框的尺寸 dimension included in frame
尺寸线 dimension line
大小尺寸 dimension of size
尺寸控制 dimensional control
尺寸限界 dimensional limit
尺寸标注 dimensioning
尺寸弦长注法 dimensioning across the chord
角度标注法 dimensioning angles
尺寸弧长注法 dimensioning around the arc
坐标标注[曲线]尺寸法 dimensioning by coordinates
支距标注[曲线]尺寸法 dimensioning by offsets
坐标标注[曲线]尺寸法 dimensioning by ordinates
半径标注[曲线]尺寸法 dimensioning by radii
尺寸线 dimensioning lines
的尺寸标注法 dimensioning of circle
比例尺 dimensioning scale
标准形体注尺寸法 dimensioning standard feature
锥度标注 dimensioning taper
注尺寸用模板 dimensioning template
二等角投影 dimentric projection
二等角 dimetric angle
二等角图 dimetric drawing
二等角椭圆模板 dimetric ellipses template
二等角比例尺 dimetric scale
德国工业标准 DIN(Deutsche Industrie Normen)
二极管(电) diode
倾斜,倾角,俯角 dip
倾角,俯角 dip angle
直流电动机控制器 direct current
直接注入尺寸 direct dimensioning size
直接注入公差 direct tolerancing
顺流标 direct vernier
准平面 directing plane
方向 direction
刀纹方向 direction of lay
平面方向 direction of plane
锥度方向 direction of taper
齿迹方向 direction of teeth
黑白晒图 directo print
准面,导面 director
投影线法(透视图) direct-projection method
准线 directrix
欠对准,示对准 disalignment
隔离开关(电) disconnecting switch
说明 discripption
描述图 discriptive graph
展示,陈列 display
展示图 display drawing
移位 disposition
距离 DIST(distance)
距离 distance
对边距离 distance across flats
配线图 distribution diagram
配电盘 distribution pannel board
同上 ditto
细节省略线 ditto line,repeat line
酒精复印机 ditto machine
除 divided
分规 divider
分规针脚 divider leg
分界线 dividing line
分数分划线 dividing line of fraction
分数分划线 division bar
图目 DL(drawing list)
钻,钻孔 DL(drill)
十二边形 dodecagon
十二面体 dodechedron
主要细节 dominant detail
门窗表 door schedule
双列铆钉对接 doouble-riveted butt joint
圆点 dot
联机 dot-and-dash line
虚线剖面线 dotted crosshatching
点线字母 dotted letter
点线字母 dotted line
虚线笔 dotted line pen
虚线剖面线 dotted section
四斜边尺 double bevel scale
双曲率 double curvature
复曲面 double curvatured suface
皮带轮的双弯幅 double curved arm of pulley
复曲率 double curved line
复曲面 double curved surface
肇转复曲面 double curved surface of revolution
变位复曲面 double curved surface of transposition
英式最大图纸大小(40''x27'') double elephant size
加倍特强管 double extra strond pipe
人字齿 double helical teeth
复双曲面 double hyperboloid
复投影面投影 double plane projection
双极双投开关 double pole double throw switch
双直纹面 double ruled surface
双直线翘曲面 double ruled warped surface
双倍比例尺 double size
双纹螺纹 double start screw thread
双列对接 double strap buttjoint
双纹螺纹 double thread
复游标 double vernier
双列铆钉搭接 double-riveted lap joint
燕尾 dovetail
燕尾槽 dovetail groove
燕尾缝 dovetail seam
合钉,定位销 dowel
下倾角 downward inclination
径节 DP(diametial pitch)
制图者 DR(drawn by)
钻,钻孔 DR(drill)
设计图,草图 draft
拔模角 draft angle
拔模斜度 draft taper
制图胶带 draftin tape
制图 drafting
制图板 drafting board
制图胶片 drafting film
制图仪,绘图仪 drafting machine
制图法 drafting method
图纸 drafting paper
制图室 drafting room
制图室记录 drafting room record
制图桌 drafting table
制图室标准 drafting-room standard
制图员 draftsman
制图铅笔 draftsman's pencil
比例尺 draftsman'scale
制图术 draftsmanship
排水管,排泄口 drain
图,图样,制图 drawing
制图板 drawing board
图上表示法 drawing callout
制图布 drawing cloth
制图圆规 drawing compass
制图桌 drawing desk,drawing table
制图墨水 drawing ink
制图仪器 drawing instruments
制图刮刀 drawing knife
制图材料 drawing material
图号 drawing number
制程中途图 drawing of an intermediate step
图纸 drawing paper
制图笔,鸭嘴笔,针笔 drawing pen
制图铅笔 drawing pencil
制图笔尖 drawing pennib
图钉 drawing pin
制图用尺寸比例 drawing proportion
制图室 drawing room
制图比例尺 drawing scale
图纸 drawing sheet
图纸大小 drawing sheet size
图的大小 drawing size
图注 drawing statement
制图符号 drawing symbol
制图桌 drawing table,drawing desk
制图技术 drawing technique
照比例绘制 drawing to scale
钻,钻孔 drill
钻尖 drill point
钻孔 drilled hole
钻 drilling
降角 drop angle
落锻 drop forging
下伸线(小楷字母) drop line
点圆规 drop pen
点圆规 dropbow compass
列表零件图 drqwing of similar
气密直管螺纹 dryseal straight pipe thread
气密斜管螺纹 dryseal taper pipe thread
设计 DSGN(design)
零件图 DTL DWG(detail drawing)
双尺寸注法(公制与英制) dual dimensioning
双比例尺(同一视图上) dual scales
堆熔接 dual weld
压块 ducks
导管,缆套,沟 duct
延性猎狼者 ductile[cast] iron
铸铁 ductility
延展性 dull side of paper
图纸无光泽面 dummy model
草稿模型 duplicate dimension
复印 duplicating
复制尺寸 duplicating racing
拭尘布 dust cloth
除尘刷,吸尘器,拭笔布 duster
除尘刷 dusting brush
图,制图 DWG(drawing)
制图者 DWN(drawn by)
全长 E to E(end to end)
件,每件 EA(each)
接地端子(电) earth terminal
地线(电) earth wire
接地(电) earthing
土方工程 earthwork
习用比例 easy drawing proportion
偏心度 eccentricity
电工符号 eclectrical symbol
边,边线,棱 edge
边距 edge distance
边缘接合 edge joint
面的边 edge of a surface
边视图 edge view
边视图法 edge view method
折边 edging
爱迪生螺纹,浅圆螺纹 Edison[screw] thread
展开立面图 edvelopment elevatin
螺纹节径 effective diameter
节径上螺 旋角 effective helix angle
熔接道有效长度 effective length of weld
卵形 egg-shape
孔的下偏差 EI(lower deviation of a hole)
轴的下偏差 ei(lower deviation of a shaft)
八[圆]心椭圆 eight center ellipse
1/8=1'比例尺 eighth scale
11/2=11/2比例尺,英式八开图纸大小13.5X10 eighth size
八[圆]心椭圆法 eight-point method
肘接头 elbow
曲折滑动接缝,肝管接缝 elbow slip joint
电动橡皮擦 electric erasing machine
电绝缘 electric insulation
电动削铅笔机 electric sharpener
线路图(电) electrical diagram
电工图 electrical drawing
电路布置图 electrical layout
电路布置图 electrical plan
电极 electrode
电解整流器 electrolytic rectifier
电子线路图 electronic diagram
电子图 electronic drawing
电子系统图 electronic scheatic diagram
电子管 electronic tube
元线,组件 element
元线 element line
首次衍生元线 element of first generation
再次衍生元线 element of second generation
单线图(电) elementary diagram
前视图,立面图,标高(海拔) elevation
仰角 elevation angle
立面辅助视图 elevation auxiliary
立面辅助视图 elevation auxiliary view
立面斜视图 elevation oblique drawing
立面图 elevational drawing elimination
消去,除去 ellipse
椭圆 ellipse letters
椭圆形字母 ellipse template
椭圆模板 ellipsograph
椭圆规 ellipsoid
椭球面,椭球体 ellipsoid of revolution
旋转椭球面,旋转椭球体 ellipsoidal coordinate
椭圆体坐标 elliptic coordinate
椭圆柱 elliptic cylinder
椭性抛物面 elliptic paraboloid
椭性双曲面 elliptical hyperboloid
砂纸 emery paper
射极(电) emitter section
经验设计 empirical design
经验公式 empirical equation
经验规则 empirical rule
外切矩形 enclosing rectangle
侧视图,侧立面图 end elevation
端点,终点 end point
端顶 end roof
端面 end suface
端视图 end view
成品图 end-product drawing
成品要求 end-product requirement
工程师 engineer
工程数据,工程数据 engineering data
工程设计制图 engineering design graphics
工程画 engineering drawing
画法几何,投影几何 engineering geometry
工程图 engineering graph
工程力学 engineering graphics
矿业图学 engineering graphics for mining
工程地图 engineering map
工程俗语 engineering parlance
工程示意图 engineering presentation drawing
工程结构 engineering structure
工程用比例尺 engineer's scale
第一角投影,第一角法 English projection
第一角投影,第一角法 English system of projection
放大图 enlarged drawing
放大比例尺 enlarged scale
放大尺寸 enlarged size
放大视图 enlarged view
放大 enlargement
放大机 enlarger
九面体 enneahedron
旋入深度(螺纹) entrance length
包络线 envelope
包络线法(画拋物线) envelope method
包络线 enveloping line
包络面 enveloping surface
外摆u epicycloid
短外摆u epitrochoid
等于 EQ(equal)
等距蜗线 equable spiral
相等尺寸 equal dimensions
等股角钢 equal-leg angle
等距分布 equally spaced position
等测 equal-measure
等角蜗线 equiangular spiral
等边三角形 equiangular triangle
等距曲线 equidistance curves
等距离形体 equidistance feature
等轴双曲线 equilateral hyperbola
等边三角形 equilateral triangle
设备 equipment
等距水平线 equispaced horizontal lines
等距铅垂线 equispaced vertical lines
相当值橡皮 equivalent
橡皮 eraser
擦除 erasing
擦线器具 erasing implement
刮线小刀 erasing knife
电动橡皮擦 erasing machine
擦线板 erasing shield
架设线图,安装线图 erection diagram
架设图,安装图 erection drawing
误差 error
方位误差 error of attitude
形状误差 error of form
位置误差 error of location
孔的上偏差 ES(upper deviation of a hole)
轴的上偏差 es(Upper deviation of a shaft)
估价图 estimate drawing
估计 estimation
第一角法 Europe system of projection
第一角法 European method
第一角投影 European projection
数元 even digit
公里数 even number
常绿树 evergreen tree
夸张的,夸大的 exaggerated
执行草图 executive sketch
开口螺栓 expansion bolt
涨缩接头 expansion joint
拉伸弹簧 expansion spring
实验数据 experimental data
说明图 explanatory drawing
说明表 explanatory table
立体分解系统图 exploded assembly drawing
立体分解系统图 exploded pictorial drawing
外 EXT(exterior,external)
立体分解系统图 extended letter
接长杆 extension bar
尺寸界线,延伸线 extension line
尺寸线之延长线 extension of dimension line
拉伸弹簧 extension spring
外角 exterior angle
外公切线 exterior common tangent
外形视图

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

From Wikipedia, the free encyclopedia

Jump to: navigation, search
14 aluminiumsiliconphosphorus
C

Si

Ge

General
Name, Symbol, Number silicon, Si, 14
Chemical series metalloids
Group, Period, Block 14, 3, p
Appearance as coarse powder,

dark grey with bluish tinge

Standard atomic weight 28.0855(3) g·mol−1
Electron configuration [Ne] 3s2 3p2
Electrons per shell 2, 8, 4
Physical properties
Phase solid
Density (near r.t.) 2.33 g·cm−3
Liquid density at m.p. 2.57 g·cm−3
Melting point 1687 K
(1414 °C, 2577 °F)
Boiling point 3538 K
(3265 °C, 5909 °F)
Heat of fusion 50.21 kJ·mol−1
Heat of vaporization 359 kJ·mol−1
Heat capacity (25 °C) 19.789 J·mol−1·K−1
Vapor pressure
P/Pa 1 10 100 1 k 10 k 100 k
at T/K 1908 2102 2339 2636 3021 3537
Atomic properties
Crystal structure Face-centered cubic
Oxidation states 4
(amphoteric oxide)
Electronegativity 1.90 (Pauling scale)
Ionization energies
(more)
1st: 786.5 kJ·mol−1
2nd: 1577.1 kJ·mol−1
3rd: 3231.6 kJ·mol−1
Atomic radius 110 pm
Atomic radius (calc.) 111 pm
Covalent radius 111 pm
Van der Waals radius 210 pm
Miscellaneous
Magnetic ordering nonmagnetic
Thermal conductivity (300 K) 149 W·m−1·K−1
Thermal expansion (25 °C) 2.6 µm·m−1·K−1
Speed of sound (thin rod) (20 °C) 8433 m/s
Young's modulus 150 GPa
Bulk modulus 100 GPa
Mohs hardness 6.5
CAS registry number 7440-21-3
Band gap energy at 300 K 1.12 eV
Selected isotopes
Main article: Isotopes of silicon
iso NA half-life DM DE (MeV) DP
28Si 92.23% Si is stable with 14 neutrons
29Si 4.67% Si is stable with 15 neutrons
30Si 3.1% Si is stable with 16 neutrons
32Si syn 170 y β- 13.020 32P
References
This box: view talk edit

Silicon (IPA: /ˈsɪlikən/, Latin: silicium) is the chemical element that has the symbol Si and atomic number 14. A tetravalent metalloid, silicon is less reactive than its chemical analog carbon. As the eighth most common element in the universe by mass, silicon occasionally occurs as the pure free element in nature, but is more widely distributed in dusts, planetoids and planets as various forms of silicon dioxide or silicate. On Earth, silicon is the second most abundant element (after oxygen) in the crust, making up 25.7% of the crust by mass.


Silicon has many industrial uses. Elemental silicon is the principal component of most semiconductor devices, most importantly integrated circuits or microchips. Silicon is widely used in semiconductors because it remains a semiconductor at higher temperatures than the semiconductor germanium and because its native oxide is easily grown in a furnace and forms a better semiconductor/dielectric interface than almost all other material combinations.

In the form of silica and silicates, silicon forms useful glasses, cements, and ceramics. It is also a component of silicones, a class-name for various synthetic plastic substances made of silicon, oxygen, carbon, germanium, and hydrogen, often confused with silicon itself.

Silicon is an essential element in biology, although only tiny traces of it appear to be required by animals. It is much more important to the metabolism of plants, particularly many grasses, and silicic acid (a type of silica) forms the basis of the striking array of protective shells of the microscopic diatoms.

[edit] Notable characteristics

Having the same structure to the outer electron orbitals (half filled subshell holding upto eight electrons) as Carbon, the two elements are very similar chemically and both are semiconductors readily either donating or sharing their four outer electrons allowing many different forms of chemical bonding. Pure silicon has a negative temperature coefficient of resistance, since the number of free charge carriers increases with temperature. The electrical resistance of single crystal silicon significantly changes under the application of mechanical stress due to the piezoresistive effect.

In its elemental crystalline form, silicon has a gray color and a metallic luster which increases with the size of the crystal. It is similar to glass in that it is rather strong, very brittle, and prone to chipping. Even though it is a relatively inert element, silicon still reacts with halogens and dilute alkalis, but most acids (except for some hyper-reactive combinations of nitric acid and hydrofluoric acid) do not affect it. Having four bonding electrons however gives it, like carbon, many opportunities to combine with other elements or compounds under the right circumstances.

[edit] Applications

As the second most common element on earth, Silicon is a very useful element that is vital to many human industries, and impacts much of modern life as a principle component in glass, concrete and cements of many kinds. Outside of the many modern world features its construction uses enable, perhaps Silicon's most lifestyle affecting application is its use as the fundamental substrate in manufacturing electronics integrated circuits such as computer chips, and discrete active devices such as power transistors. Further, the element and its compounds find widespread use in explosives and pyrotechnics [1] and further uses in mechanical seals, high temperature silicon based greases, caulking compounds and so forth. It's not much of a stretch to say it might be easier to list applications which Silicon does not affect instead of the broad family of uses it does—and it is certainly fair to say without Silicon's uses, our life would be unrecognizably different if at all possible.

[edit] Alloys

  • The largest and biggest application of pure silicon (metallurgical grade silicon) is in aluminum-silicon alloys, often called "light alloys", to produce cast parts, mainly for automotive industry. (This represents about 55% of the world consumption of pure silicon.)
  • The second largest application of pure silicon is as a raw material in the production of silicones (about 40% of the world consumption of silicon)
  • Pure silicon is also used to produce ultra-pure silicon for electronic and photovoltaic applications:
  • Steel and cast iron: Silicon is an important constituent of some steels, and it is used in the production process of cast iron. It is introduced as ferrosilicon or silicocalcium alloys.

[edit] Compounds

  • Construction: Silicon dioxide or silica in the form of sand and clay is an important ingredient of concrete and brick and is also used to produce Portland cement.
  • Pottery/Enamel is a refractory material used in high-temperature material production and its silicates are used in making enamels and pottery.
  • Glass: Silica from sand is a principal component of glass. Glass can be made into a great variety of shapes and with a many different physical properties. Silica is used as a base material to make window glass, containers, insulators, and many other useful objects.
  • Abrasives: Silicon carbide is one of the most important abrasives.
  • Medical materials: Silicones are flexible compounds containing silicon-oxygen and silicon-carbon bonds; they are widely used in applications such as artificial breast implants and contact lenses. Silicones are also used in many other applications.
  • Silly Putty was originally made by adding boric acid to silicone oil. Now name-brand Silly Putty also contains significant amounts of elemental silicon. (Silicon binds to the silicone and allows the material to bounce 20% higher.)

See also Category:Silicon compounds

[edit] History

Silicon was first identified by Jöns Jakob Berzelius in 1787 (as a component of the Latin silex, or silicis (meaning what were more generally termed "the flints" or "Hard Rocks" during the Early Modern era where nowadays as we would say "silica" or "silicates"), and was later mistaken by Humphry Davy in 1800 for a compound. In 1811 Gay-Lussac and Thénard probably prepared impure amorphous silicon through the heating of potassium with silicon tetrafluoride. In 1824, Berzelius prepared amorphous silicon using approximately the same method as Lussac. Berzelius also purified the product by repeatedly washing it.

Because silicon is an important element in semiconductors and high-tech devices, the high-tech region of Silicon Valley, California, is named after this element.

[edit] Occurrence

Measured by mass, silicon makes up 25.7% of the Earth's crust and is the second most abundant element on Earth, after oxygen. Pure silicon crystals are only occasionally found in nature; they can be found as inclusions with gold and in volcanic exhalations. Silicon is usually found in the form of silicon dioxide (also known as silica), and silicate.

Silica occurs in minerals consisting of (practically) pure silicon dioxide in different crystalline forms. Sand, amethyst, agate, quartz, rock crystal, chalcedony, flint, jasper, and opal are some of the forms in which silicon dioxide appears. (They are known as "lithogenic", as opposed to "biogenic", silicas.)

Silicon also occurs as silicates (various minerals containing silicon, oxygen and one or another metal), for example feldspar. These minerals occur in clay, sand and various types of rock such as granite and sandstone. Asbestos, feldspar, clay, hornblende, and mica are a few of the many silicate minerals.

Silicon is a principal component of aerolites, which are a class of meteoroids, and also is a component of tektites, which are a natural form of glass.

See also Category:Silicate minerals

[edit] Production

Silicon is commercially prepared by the reaction of high-purity silica with wood, charcoal, and coal, in an electric arc furnace using carbon electrodes. At temperatures over 1900 °C, the carbon reduces the silica to silicon according to the chemical equation

SiO2 + C → Si + CO2.

Liquid silicon collects in the bottom of the furnace, and is then drained and cooled. The silicon produced via this process is called metallurgical grade silicon and is at least 98% pure. Using this method, silicon carbide, SiC, can form. However, provided the amount of SiO2 is kept high, silicon carbide may be eliminated, as explained by this equation:

2 SiC + SiO2 → 3 Si + 2 CO.

In 2005, metallurgical grade silicon cost about $ 0.77 per pound ($1.70/kg).[2]

[edit] Purification

The use of silicon in semiconductor devices demands a much greater purity than afforded by metallurgical grade silicon. Historically, a number of methods have been used to produce high-purity silicon.

[edit] Physical methods

Silicon wafer with mirror finish (NASA)

Silicon wafer with mirror finish (NASA)

Early silicon purification techniques were based on the fact that if silicon is melted and re-solidified, the last parts of the mass to solidify contain most of the impurities. The earliest method of silicon purification, first described in 1919 and used on a limited basis to make radar components during World War II, involved crushing metallurgical grade silicon and then partially dissolving the silicon powder in an acid. When crushed, the silicon cracked so that the weaker impurity-rich regions were on the outside of the resulting grains of silicon. As a result, the impurity-rich silicon was the first to be dissolved when treated with acid, leaving behind a more pure product.

In zone melting, also called zone refining, the first silicon purification method to be widely used industrially, rods of metallurgical grade silicon are heated to melt at one end. Then, the heater is slowly moved down the length of the rod, keeping a small length of the rod molten as the silicon cools and re-solidifies behind it. Since most impurities tend to remain in the molten region rather than re-solidify, when the process is complete, most of the impurities in the rod will have been moved into the end that was the last to be melted. This end is then cut off and discarded, and the process repeated if a still higher purity is desired.

[edit] Chemical methods

Today, silicon is instead purified by converting it to a silicon compound that can be more easily purified than silicon itself, and then converting that silicon element back into pure silicon. Trichlorosilane is the silicon compound most commonly used as the intermediate, although silicon tetrachloride and silane are also used. When these gases are blown over silicon at high temperature, they decompose to high-purity silicon.

At one time, DuPont produced ultra-pure silicon by reacting silicon tetrachloride with high-purity zinc vapors at 950 °C, producing silicon according to the chemical equation

SiCl4 + 2 Zn → Si + 2 ZnCl2.

However, this technique was plagued with practical problems (such as the zinc chloride byproduct solidifying and clogging lines) and was eventually abandoned in favor of the Siemens process.


In the Siemens process, high-purity silicon rods are exposed to trichlorosilane at 1150 °C. The trichlorosilane gas decomposes and deposits additional silicon onto the rods, enlarging them according to chemical reactions like

2 HSiCl3 → Si + 2 HCl + SiCl4.

Silicon produced from this and similar processes is called polycrystalline silicon. Polycrystalline silicon typically has impurity levels of less than 10−9.


In 2006 REC announced construction of a plant based on fluidized bed technology using silane [2].

3SiCl4 + Si + 2H2 → 4HSiCl3
4HSiCl3 → 3SiCl4 + SiH4
SiH4 → Si + 2H2

[edit] Crystallization

The majority of silicon crystals grown for device production are produced by the Czochralski process, (CZ-Si) since it is the cheapest method available and it is capable of producing large size crystals. However, silicon single-crystals grown by the Czochralski method contain impurities since the crucible which contains the melt dissolves. For certain electronic devices, particularly those required for high power applications, silicon grown by the Czochralski method is not pure enough. For these applications, float-zone silicon (FZ-Si) can be used instead. It is worth mentioning though, in contrast with CZ-Si method in which the seed is dipped into the silicon melt and the growing crystal is pulled upward, the thin seed crystal in the FZ-Si method sustains the growing crystal as well as the polysilicon rod from the bottom. As a result, it is difficult to grow large size crystals using the float-zone method. Today, all the dislocation-free silicon crystals used in semiconductor industry with diameter 300mm or larger are grown by the Czochralski method with purity level significantly improved.

[edit] Different forms of silicon

One can notice the color change in silicon nanopowder. This is caused by the quantum effects which occur in particles of nanometric dimensions. See also Potential well, Quantum dot, and Nanoparticle.

[edit] Isotopes

Main article: isotopes of silicon

Silicon has numerous known isotopes, with mass numbers ranging from 22 to 44. 28Si (the most abundant isotope, at 92.23%), 29Si (4.67%), and 30Si (3.1%) are stable; 32Si is a radioactive isotope produced by argon decay. Its half-life has been determined to be approximately 170 years (0.21 MeV), and it decays by beta - emission to 32P (which has a 14.28 day half-life [3]) and then to 32S.

[edit] Silicon-based life

Since silicon is similar to carbon, particularly in its valency, some people have proposed the possibility of silicon-based life. One main detraction for silicon-based life is that unlike carbon, silicon does not have the tendency to form double and triple bonds.

Although there are no known forms of life that rely entirely on silicon-based chemistry, there are some that rely on silicon minerals for specific functions. Some bacteria and other forms of life, such as the protozoa radiolaria, have silicon dioxide skeletons, and the sea urchin has spines made of silicon dioxide. These forms of silicon dioxide are known as biogenic silica. Silicate bacteria use silicates in their metabolism.

Life as we know it could not have developed based on a silicon biochemistry. The main reason for this fact is that life on Earth depends on the carbon cycle: autotrophic entities use carbon dioxide to synthesize organic compounds with carbon, which is then used as food by heterotrophic entities, which produce energy and carbon dioxide from these compounds. If carbon was to be replaced with silicon, there would be a need for a silicon cycle. However, silicon dioxide precipitates in aqueous systems, and cannot be transported among living beings by common biological means.

As such, another solvent would be necessary to sustain silicon-based life forms; it would be difficult (if not impossible) to find another common compound with the unusual properties of water which make it an ideal solvent for carbon-based life. Larger silicon compounds analogous to common hydrocarbon chains (silanes) are also generally unstable owing to the larger atomic radius of silicon and the correspondingly weaker silicon-silicon bond; silanes decompose readily and often violently in the presence of oxygen making them unsuitable for an oxidizing atmosphere such as our own. Silicon also does not readily participate in pi-bonding (the second and third bonds in triple bonds and double bonds are pi-bonds) as its p-orbital electrons experience greater shielding and are less able to take on the necessary geometry. Furthermore, although some silicon rings (cyclosilanes) analogous to common the cycloalkanes formed by carbon have been synthesized, these are largely unknown. Their synthesis suffers from the difficulties inherent in producing any silane compound, whereas carbon will readily form five-, six-, and seven-membered rings by a variety of pathways (the Diels-Alder reaction is one naturally-occurring example), even in the presence of oxygen. Silicon's inability to readily form long silane chains, multiple bonds, and rings severely limits the diversity of compounds that can be synthesized from it. Under known conditions, silicon chemistry simply cannot begin to approach the diversity of organic chemistry, a crucial factor in carbon's role in biology.

However, silicon-based life could be construed as being life which exists under a computational substrate. This concept is yet to be explored in mainstream technology but receives ample coverage by sci-fi authors.

A. G. Cairns-Smith has proposed that the first living organisms to exist were forms of clay minerals—which were probably based around the silicon atom.

[edit] Compounds

For examples of silicon compounds see silicate, silane (SiH4), silicic acid (H4SiO4), silicon carbide (SiC), silicon dioxide (SiO2), silicon tetrachloride (SiCl4), silicon tetrafluoride (SiF4), and trichlorosilane (HSiCl3).

See also Category:Silicon compounds

[edit] References

  1. ^ [1], E.-C. Koch, D. Clement, Special Materials in Pyrotechnics: VI. Silicon - An Old Fuel with New Perspectives
  2. ^ http://hugin.info/136555/R/1115224/203491.pdf REC presentation to investors accessed 8 July 2007


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end mills、Специальные

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Μετάβαση σε: πλοήγηση, αναζήτηση

Το χημικό στοιχείο Πυρίτιο είναι ένα μεταλλοειδές με ατομικό αριθμό 14 και ατομικό βάρος 28,0855 gr/mol. Έχει θερμοκρασία τήξης 1414 C° και θερμοκρασία βρασμού 3265 C°. Το σύμβολό του είναι Si.

Εξάγεται από την πυριτία (σίλικα). Χρησιμοποιείται στα τρανζίστορ και στην κατασκευή μικροκυκλωμάτων (μικροτσίπς). Το διοξείδιο του πυριτίου είναι το κύριο συστατικό των αεροπηκτωμάτων.

* Το πυρίτιο ανακαλύφθηκε το 1823.

Το Πυρίτιο βρίσκεται στην IV ομάδα του περιοδικού πίνακα μαζί με τον Άνθρακα, το Γερμάνιο, τον Κασσίτερο και το Μόλυβδο. Αυτό σημαίνει ότι έχει τέσσερα ηλεκτρόνια στην εξωτερική του στοιβάδα, από τα 14 που διαθέτει συνολικά. Δεν απαντάται ελεύθερο στη φύση αλλά μόνο σε ενώσεις. Τα διάφορα ορυκτά και πετρώματα του Πυριτίου αποτελούν το 87% του φλοιού της Γης ενώ είναι το έβδομο σε αφθονία χημικό στοιχείο στη φύση μετά τα H, He, C, N, O και Ne. Το Πυρίτιο αποτελεί τη βάση όλης της σύγχρονης τεχνολογίας των τρανζίστορς , των ολοκληρωμένων κυκλωμάτων και της μικροηλεκρονικής. Το καθαρό Πυρίτιο είναι στερεό σε θερμοκρασία δωματίου ενώ λιώνει στους 1414 οC, το σημείο βρασμού του είναι στους 3265 οC και η πυκνότητα του είναι 2.33 kg/m3. Το στοιχείο αυτό χρησιμοποιείται ευρέως στους ημιαγωγούς, καθώς παραμένει ημιαγωγός σε υψηλές θερμοκρασίες, σε αντίθεση με το στοιχείο Γερμάνιο, και επειδή τα οξείδιά του αναπτύσσονται εύκολα σε κλίβανο και σχηματίζουν καλύτερες διεπιφάνειες ημιαγωγού/διηλεκτρικού από σχεδόν όλους τους άλλους συνδυασμούς στοιχείων.
BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Фрезеры’Carbide drill、High speed steel、Milling cutter、CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drill、Tapered end mills、CVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end mills、Miniature end mills、Специальные режущие инструменты ‘Пустотелое сверло ‘Pilot reamer、Fraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angel carbide end mills、Carbide torus cutters、Carbide ball-nosed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Eigenschaften
Allgemein
Name, Symbol, Ordnungszahl Silicium, Si, 14
Serie Halbmetalle
Gruppe, Periode, Block 14, 3, p
Aussehen dunkelgrau,
bläulicher Farbton
Massenanteil an der Erdhülle 25,8 %
Atomar
Atommasse 28,0855 u
Atomradius (berechnet) 110 (111) pm
Kovalenter Radius 111 pm
Van-der-Waals-Radius 210 pm
Elektronenkonfiguration [Ne] 3s2 3p2
Elektronen pro Energieniveau 2, 8, 4
1. Ionisierungsenergie 786,5 kJ/mol
2. Ionisierungsenergie 1577,1 kJ/mol
3. Ionisierungsenergie 3231,6 kJ/mol
4. Ionisierungsenergie 4355,5 kJ/mol
Physikalisch
Aggregatzustand fest
Modifikationen
Kristallstruktur Diamant-Struktur
Dichte 2330 kg/m3
Mohshärte 6,5
Magnetismus unmagnetisch
Schmelzpunkt 1683 K (1410 °C)
Siedepunkt 2628 K (2355 °C)
Molares Volumen 12,06 · 10-6 m3/mol
Verdampfungswärme 384,22 kJ/mol
Schmelzwärme 50,55 kJ/mol
Dampfdruck

4,77 Pa bei 1683 K

Schallgeschwindigkeit long.: ~8900 m/s
trans.: ~5300 m/s bei 293 K
Spezifische Wärmekapazität 700 J/(kg · K) bei 298 K
Elektrische Leitfähigkeit 2,52 10-4 S/m
Wärmeleitfähigkeit 148 W/(m · K)
Chemisch
Oxidationszustände -4, (2) +4
Oxide (Basizität) SiO2 (amphoter)
Normalpotential
Elektronegativität 1,90 (Pauling-Skala)
Isotope
Isotop NH t1/2 ZM ZE MeV ZP
26Si

{syn.}

2,234 s e 5,066 26Al
27Si

{syn.}

4,16 s e 4,812 27Al
28Si

92,23 %

Stabil
29Si

4,67 %

Stabil
30Si

3,1 %

Stabil
31Si

{syn.}

157,3 min ß- 1,492 31P
32Si

{syn.}

276 a ß- 0,224 32P
33Si

{syn.}

6,18 s ß- 5,845 33P
34Si

{syn.}

2,77 s ß- 4,601 34P
NMR-Eigenschaften
Spin γ in
rad·T−1·s−1
E fL bei
B = 4,7 T
in MHz
29Si 1/2 - 5,319 3,69 · 10-4 19,864 (2,3488 T)
Sicherheitshinweise
Gefahrstoffkennzeichnung
Granulat

Pulver
Gefahrensymbole
Leichtentzündlich
F
Leichtent-
zündlich
Reizend
Xi
Reizend
R- und S-Sätze R: 36/38 (Granulat)[1]

R: 11-36/37/38 (Pulver)[2]

S: 26-36/37/39 [1][2]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet.
Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Silicium (von lat. silex „Kiesel“; häufig verwendet wird auch die Schreibweise Silizium, die aber nicht IUPAC-konform ist; engl.: silicon) ist ein chemisches Element mit dem Symbol Si und der Ordnungszahl 14. Es steht in der 4. Hauptgruppe (Tetrele) und 3. Periode des Periodensystems der Elemente.

Silicium ist ein klassisches Halbmetall und weist daher sowohl Eigenschaften von Metallen als auch von Nichtmetallen auf. Reines, elementares Silicium besitzt eine grau-schwarze Farbe und weist einen typisch metallischen, oftmals bronzenen bis bläulichen Glanz auf.

Silicium ist ein Elementhalbleiter. Wie nur wenige andere Stoffe (wie Wasser) weist Silicium eine Dichteanomalie auf: Seine Dichte ist in flüssiger Form höher als in fester.

Elementares Silicium ist für den menschlichen Körper ungiftig, in gebundener silikatischer Form ist Silicium für den Menschen wichtig. Siliciummangel führt unter anderem zu Wachstumsstörungen des Knochengerüstes. Der menschliche Körper enthält etwa 20 mg/kg Körpergewicht Silicium. Der Wert nimmt im Alter jedoch ab.

Geschichte [Bearbeiten]

Nutzung in vorindustrieller Zeit [Bearbeiten]

Siliciumhaltige Verbindungen spielen in der Menschheitsgeschichte als Baumaterial traditionell eine wichtige Rolle. In gewaltigen Steinsetzungen wie Stonehenge wird religiöse und astronomische Bedeutung vermutet. Die Ägypter meisterten die sichere Bearbeitung und Handhabung gewaltiger Gesteinsmassen. Astgeflecht-Lehmbau für Herde, Öfen, Gebäude, luftgetrocknete, später gebrannte Kacheln, Ziegel und Tongefäße sind die ersten weiterverarbeiteten Siliciumverbindungen. Gewölbebauten im Orient aus gebrannten Ziegeln werden von den Römern zu hohen Aquädukten und Innenräumen von bis zu 40 Metern Spannweite weiterentwickelt. Auch ein unter Wasser härtender Zement aus gebrannten Silikaten wird von ihnen entdeckt. In römischer Zeit wird Straßenbau für hohe Belastung und Dauerhaftigkeit auf Schotterunterbau entwickelt. Glasfenster machen Gebäude für die Römer auch in den nördlichen Besatzungsgebieten bewohnbar und werden von den Einheimischen übernommen. In Sandstein und Mauerstein wird der Gewölbebau in der Gotik zur Vollendung gebracht.

Bergkristall aus SiO2

Bergkristall aus SiO2

Aufgrund ihrer scharfen Schnittkanten fanden siliciumhaltige Gesteine in der Steinzeit auch Einsatz als Werkzeuge. Bereits in vorgeschichtlicher Zeit ist zum Beispiel Obsidian als besonders geeignetes Werkzeugmaterial abgebaut und durch Handel weithin verbreitet worden. Auch Flintstein wurde in Kreidegebieten, etwa in Belgien und Dänemark, bergmännisch gewonnen. Bei der Metallgewinnung, insbesondere bei der Stahlherstellung, wird Silikat-Schlacke zum Schutz der Herde und Öfen vor Sauerstoffzutritt und als Form aus Ton oder Sand eingesetzt; dabei wurde möglicherweise die Glasherstellung entdeckt.

Elemententdeckung [Bearbeiten]

Als Element wurde Silicium vermutlich zum ersten Mal von Antoine Lavoisier im Jahre 1787 und unabhängig davon von Humphry Davy im Jahre 1800 hergestellt, fälschlicherweise jedoch für eine Verbindung gehalten. Im Jahre 1811 stellten der Chemiker Joseph Louis Gay-Lussac und Louis Jacques Thénard (vgl. Thénards Blau) unreines und amorphes Silicium (a-Si, die nichtkristalline, allotropische Form des Siliciums) her. Dazu setzten sie Siliciumtetrafluorid mit elementarem Kalium um. Ein ähnliches Vorgehen wurde 1824 von Jöns Jakob Berzelius in Schweden durch Umsetzung eines Hexafluorosilikates mit elementarem Kalium beschritten. Berzelius reinigte das so erhaltene amorphe Silicium durch Waschen auf. Er erkannte als erster die elementare Natur des Siliciums und gab ihm seinen Namen. Der Begriff Silicium leitet sich vom lateinischen Wort silex (Kieselstein, Feuerstein) ab. Er bringt zum Ausdruck, dass Silicium häufiger Bestandteil vieler Minerale und nach Sauerstoff und noch vor Aluminium das zweithäufigste Element der Erdkruste ist. Es exisitieren jedoch auch Quellen, welche den Begriff Silicium auf Antoine Lavoisier zurückführen.

Der englische Begriff silicon wurde 1813 von dem Engländer Thomas Thomson (1773-1852) vorgeschlagen. Die Endung -on soll dabei auf die chemische Verwandtschaft zum Kohlenstoff (carbon) hinweisen.

Die erstmalige Herstellung reinen, kristallinen Siliciums gelang im Jahre 1854 dem französischen Chemiker Henri Etienne Sainte-Claire Deville mittels Elektrolyse.

Nutzung in der Neuzeit [Bearbeiten]

Siliciumhaltige Verbindungen sind auch Bestandteile moderner Baumaterialen wie zum Beispiel Zement, Beton oder Glas. Im 19. Jahrhundert werden Stahl-, Zement- und Glasherstellung als Großindustrien entwickelt. Silicium dient dabei als Legierungsbestandteil, Flussmittel, Formsand und Sauerstoffschutz.

1947 entdecken John Bardeen, Walter Brattain und William Shockley den regelbaren elektrischen Widerstand, den Transistor, zunächst an einem Germaniumkristall. Es dauert einige Zeit, bis das verbindungsfreudige Silicium in der für Halbleitereigenschaften notwendigen Reinheit isoliert werden konnte. 1956 entwickeln Robert Noyce bei Fairchild und Jack S. Kilby bei Texas Instruments unabhängig voneinander die integrierte Schaltung (IC) auf einem Silicium-Chip. Heutzutage stellt Silicium das Grundmaterial der meisten Produkte der Halbleiterindustrie da. So dient auch als Basismaterial für viele Sensoren und andere mikromechanischen Systeme (z. B. Hebelarm in einem Rasterkraftmikroskop). Silicium ist ebenfalls der elementare Bestandteil der meisten Photovoltaikelemente.

Im November 2005 wird von ersten erfolgversprechenden Versuchsergebnissen mit Siliciumlasern berichtet. Silicium wird als energiereicher Brennstoff in vielen Explosivstoffen verwendet [3]

Vorkommen [Bearbeiten]

Silicium in der unbelebten Natur [Bearbeiten]

Metallurgisches Siliciumpulver

Metallurgisches Siliciumpulver

Die gesamte Erde besteht zu etwa 15 Gewichtsprozent aus Silicium; insbesondere der Erdmantel setzt sich zu einem beträchtlichen Anteil aus silikatischen Gesteinsschmelzen zusammen. Die Erdkruste besteht zu etwa 25,8 Gewichtsprozent aus Silicium; damit ist es das zweithäufigste chemische Element nach dem Sauerstoff. Hier tritt Silicium im wesentlichen in Form silikatischer Minerale oder als reines Siliciumdioxid auf. So besteht Sand vorwiegend aus Siliciumdioxid. Quarz ist reines Siliciumdioxid. Viele Halbedelsteine und Schmucksteine bestehen aus Siliciumdioxid und mehr oder weniger Beimengungen anderer Stoffe, etwa Amethyst, Rosen- und Rauchquarz, Achat, Jaspis und Opal. Mit vielen Metallen bildet Silicium Silikate aus. Beispiele für silikathaltige Gesteine sind Glimmer, Asbest, Ton, Schiefer, Feldspat und Sandstein. Auch die Weltmeere stellen ein gewaltiges Reservoir an Silicium dar: In Form der monomeren Kieselsäure ist es in allen Ozeanen in beträchtlichen Mengen gelöst.

Silicium in der belebten Natur [Bearbeiten]

Neben der bereits erwähnten essentiellen Natur des Siliciums gibt es eine Reihe von Lebewesen, die siliciumdioxidhaltige Strukturen erzeugen. Am bekanntesten sind dabei die Kieselalgen (Diatomeen), welche sich durch enzymkatalysierte Kondensation von Orthokieselsäure Si(OH)4 ein Exoskelett aus Siliciumdioxid aufbauen. Auch viele Pflanzen enthalten in ihren Stängeln und Blättern Siliciumdioxid. Bekannte Beispiele sind hier der Schachtelhalm und die Bambuspflanze. Durch das aufgebaute Siliciumdioxidgerüst erhalten diese zusätzliche Stabilität. In der Fauna bilden auch viele Schwämme und Radiolarien Exoskelette aus Siliciumdioxid.

Gewinnung im Labor [Bearbeiten]

Elementares Silicium kann im Labormaßstab durch Reduktion, ausgehend von Siliciumdioxid oder Siliciumtetrafluorid, mit unedlen Metallen gewonnen werden. Bei Reaktion 2.) handelt es sich um ein aluminothermisches Verfahren, welche jedoch nur unter Zusatz von elementarem Schwefel funktioniert, die dritte Route entspricht der Elemententdeckung:

1.) \ \mathrm{SiO_2 + 2 \ Mg \longrightarrow Si + 2 \ MgO}
2.) \ \mathrm{3 \ SiO_2 + 4 \ Al \longrightarrow 3 \ Si + 2 \ Al_2O_3}
3.) \ \mathrm{3 \ SiF_4 + 4 \ Al \longrightarrow 3 \ Si + 4 \ AlF_3}


Hochreaktives amorphes Silicium kann durch Reduktion mit Natrium oder Acidolyse von Siliciden erhalten werden:

1.) \ \mathrm{SiCl_4 + 4 \ Na \longrightarrow Si + 4 \ NaCl}
2.) \ \mathrm{3 \ CaSi_2 + 6 \ HCl \longrightarrow 6 \ Si + 3 \ CaCl_2 + 3 \ H_2}

Gewinnung in der Industrie [Bearbeiten]

Elementares Silicium findet in unterschiedlichen Reinheitsgraden Verwendung in der Metallurgie (Ferrosilicium), der Photovoltaik (Solarzellen) und in der Mikroelektronik (Halbleiter, Computerchips). Demgemäß ist es in der Wirtschaft gebräuchlich, elementares Silicium anhand unterschiedlicher Reinheitsgrade zu klassifizieren. Man unterscheidet Simg (metallurgical grade, Rohsilicium, 98–99 % Reinheit), Sisg (solar grade, Solarsilicium, 99,99 % Reinheit) und Sieg (electronic grade, Halbleitersilicium, Verunreinigungen <1 href="http://de.wikipedia.org/wiki/Ppb" title="Ppb">ppb).

Rohsilicium [Bearbeiten]

Im industriellen Maßstab wird elementares Silicium durch die Reduktion von Siliciumdioxid mit Kohlenstoff im Lichtbogenofen bei Temperaturen von etwa 2000 °C gewonnen.

\mathrm{SiO_2 + 2 \ C \longrightarrow Si + 2 \ CO}

Von diesem industriellen Rohsilicium (Simg) wurden im Jahre 2002 etwa 4,1 Millionen Tonnen hergestellt. Es ist für metallurgische Zwecke ausreichend sauber und findet Verwendung als Legierungsbestandteil für Weißblech und Stähle (Verbesserung der Korrosionsbeständigkeit) sowie als Ausgangsstoff für die Silanherstellung über das Müller-Rochow-Verfahren, welche schließlich vor allem zur Herstellung von Silikonen dienen. Zur Herstellung von Ferrosilicium für die Stahlindustrie (Desoxidationsmittel im Hochofenprozess) wird zweckmäßigerweise nachfolgende Reaktion unter Anwesenheit von elementarem Eisen durchgeführt.

\mathrm{SiO_2 + 2 \ C + Fe \longrightarrow FeSi + 2 \ CO}

Solarsilicium [Bearbeiten]

Polykristallines Solarsilicium

Polykristallines Solarsilicium

Für photovoltaische Anwendungen muss das Rohsilicium jedoch weiter zum Solarsilicium (Sisg) gereinigt werden. Dazu wird es im Siemens-Verfahren zunächst mit gasförmigen Chlorwasserstoff bei 300–350 °C in einem Wirbelschichtreaktor zu Trichlorsilan (Silicochloroform) umgesetzt.

\mathrm{Si + 3 \ HCl \longrightarrow H_2 + HSiCl_3}

Nach aufwendigen Destillationsschritten wird das Trichlorsilan in Anwesenheit von Wasserstoff in einer Umkehrung der obigen Reaktion an beheizten Reinstsiliciumstäben bei 1000–1200 °C wieder thermisch zersetzt. Das elementare Silicium wächst dabei auf die Stäbe auf. Der dabei freiwerdende Chlorwasserstoff wird in den Kreislauf zurückgeführt. Als Nebenprodukt fällt Siliciumtetrachlorid an, welches entweder zu Trichlorsilan umgesetzt und in den Prozess zurückgeführt oder in der Sauerstoffflamme zu pyrogener Kieselsäure verbrannt wird.

Eine chlorfreie Alternative zu obigem Verfahren stellt die Zersetzung von Monosilan dar, welches ebenfalls aus den Elementen gewonnen werden kann und nach einem Reinigungsschritt an beheizten Oberflächen oder beim Durchleiten durch Wirbelschichtreaktoren wieder zerfällt.

\mathrm{SiH_4 \longrightarrow 2 \ H_2 + Si}

Das auf diesen Wegen erhaltene polykristalline Silicium (Polysilicium) ist für die Herstellung von Solarpanels geeignet und besitzt eine Reinheit von über 99,99 %. In der Solartechnik werden genau wie beim Einsatz in der Mikroelektronik die halbleitenden Eigenschaften des Siliciums ausgenutzt.

Nur noch von historischem Interesse ist ein Verfahren, das früher von der Firma DuPont angewendet wurde. Es basierte auf der Reduktion von Tetrachlorsilan mit elementarem Zinkdampf bei Temperaturen von 950 °C.

\mathrm{SiCl_4 + 2 \ Zn \longrightarrow Si + 2 \ ZnCl_2}

Aufgrund technischer Probleme und der großen Mengen an anfallendem Zinkchloridabfall wird dieses Verfahren jedoch heute nicht mehr angewendet.

Halbleitersilicium [Bearbeiten]

Monokristallines Halbleitersilicium

Monokristallines Halbleitersilicium

Für Anwendungen in der Mikroelektronik wird hochreines, monokristallines Halbleitersilicium (Sieg) benötigt. Insbesondere müssen Verunreinigung mit Elementen, welche auch als Dotierelemente geeignet sind, mittels des Tiegelziehens oder Zonenschmelzens unterhalb kritischer Werte gebracht werden.

Beim Tiegelziehen (Czochralski-Verfahren) wird das im Siemensverfahren erhaltene Solarsilicium in Quarztiegeln geschmolzen. Ein Impfkristall aus hochreinem monokristallinen Silicium wird in diese Schmelze gebracht und langsam unter Drehen aus der Schmelze herausgezogen, wobei hochreines Silicium in monokristalliner Form auf dem Kristall auskristallisiert und dadurch fast alle Verunreinigungen in der Schmelze zurückbleiben. Physikalischer Hintergrund dieses Reinigungsverfahrens ist die Schmelzpunkterniedrigung und Neigung von Stoffen, möglichst rein zu kristallisieren.

Alternativ wird beim Zonenschmelzen mit Hilfe einer (ringförmigen) elektrischen Induktionsheizung eine Schmelzzone durch einen Siliciumstab gefahren, wobei sich ein Großteil der Verunreinigungen in der Schmelze löst und mitwandert.

Hochreines kristallines Silicium ist das Grundmaterial schlechthin für die Mikroelektronik. Alle gängigen Computerchips, Speicher, Transistoren etc. verwenden hochreines Silicium als Ausgangsmaterial. Diese Anwendungen beruhen auf der Tatsache, dass Silicium ein Halbleiter ist. Durch die gezielte Einlagerung von Fremdatomen (Dotierung), wie beispielsweise Indium, Antimon, Arsen, Bor oder Phosphor, können die elektrischen Eigenschaften von Silicium in einem weiten Bereich verändert werden. Dadurch lassen sich verschiedenste elektronische Schaltungen realisieren. Wegen der zunehmenden Bedeutung der elektronischen Schaltungen spricht man auch vom Silicium-Zeitalter. Auch die Bezeichnung Silicon Valley („Silicium-Tal“) für die Hightech-Region in Kalifornien weist auf die enorme Wichtigkeit des Siliciums in der Halbleiter- und Computerindustrie hin.

Amorphes Silicium kann mit Hilfe von Excimerlasern in polykristallines Silicium umgewandelt werden. Dies ist für die Herstellung von Dünnfilmtransistoren (Thin-Film-Transistor, TFT) für Flachbildschirme von zunehmender Bedeutung.

Hersteller [Bearbeiten]

Weltweit stellen aufgrund der hohen Anfangsinvestitionen und langen Bauzeiten für die notwendigen Öfen nur wenige Firmen Rohsilicium her.

Die größten Produzenten für metallurgisches Silicium sind

  1. Elkem (N, USA)
  2. Invensil (F, USA) [4]
  3. Globe Metallurgical (USA)
  4. Rima Metal (Br)
  5. Wacker Chemie (D)

Es gibt noch ca. 15 andere große Produzenten. In der VR China gibt es eine Reihe kleinerer Werke, im Ländervergleich ist sie daher der größte Produzent. [5]

Die Hauptproduzenten von Reinstsilicium für die Elektronik- und Solarindustrie mit einer Reinheit von über 99,9999 % sind Wacker-Chemie aus Deutschland, die REC Gruppe aus Norwegen, Hemlock aus den USA, Tokuyama sowie ASiMI aus Japan (Stand 2004/2005).

Silicium ist im Handel sowohl als feinkörniges Pulver als auch in größeren Stücken erhältlich. Hochreines Silicium für die Anwendung in Solarpanelen oder in Halbleiterkomponenten wird in der Regel in Form von dünnen Scheiben aus Ein-Kristallen, sogenannten Silicium-Wafern, produziert.

Eigenschaften [Bearbeiten]

Physikalische Eigenschaften [Bearbeiten]

Spektrum der komplexen Brechzahl (N = n + i k) von Silicium

Spektrum der komplexen Brechzahl (N = n + i k) von Silicium

Silicium ist wie die im Periodensystem benachbarten Germanium, Gallium, Phosphor und Antimon ein Elementhalbleiter. Der gemäß dem Bändermodell geltende energetische Abstand zwischen Valenzband und Leitungsband beträgt 1,107 eV (bei Raumtemperatur). Durch Dotierung mit geeigneten Dotierelementen wie beispielsweise Bor oder Arsen kann die Leitfähigkeit um einen Faktor 106 gesteigert werden. In solchermaßen dotierten Silicium ist die durch die von Fremdatomen und Gitterdefekten verursachte Störstellenleitung deutlich größer als die der Eigenleitung, weshalb derartige Materialien als Störstellenhalbleiter bezeichnet werden. Der Gitterparameter beträgt 543 pm.

Die von der Wellenlänge des Lichts abhängige komplexe Brechzahl ist im nebenstehenden Bild dargestellt [6] [7]. Auch hier lassen sich Informationen über die Bandstruktur ablesen. So erkennt man anhand des stark steigenden Verlaufs des Absorptionskoeffizienten k einen direkten Bandübergang bei 370 nm (EΓ1 = 3,4 eV). Ein weiterer direkter Bandübergang ist bei ~ 300 nm (EΓ2 = 4,2 eV) zu beobachten. Der indirekte Bandübergang von Silicium (Eg = 1,1 eV) kann nur erahnt werden. Dass weitere indirekte Bandübergänge vorhanden sind, ist an der weit auslaufenden Kurve von k für Wellenlängen > 400 nm erkennbar.

Chemische Eigenschaften [Bearbeiten]

In allen in der Natur auftretenden und in der überwiegenden Zahl der synthetisch hergestellten Verbindungen bildet Silicium ausschließlich Einfachbindungen aus. Die Stabilität der Si-O-Einfachbindung im Gegensatz zur C-O-Doppelbindung ist auf ihren partiellen Doppelbindungscharakter zurückzuführen, der durch Überlappung der freien Elektronenpaare des Sauerstoffs mit den leeren d-Orbitalen des Siliciums zustandekommt. Die lange Jahre als gültig angesehene Doppelbindungsregel, wonach Silicium als Element der 3. Periode keine Mehrfachbindungen ausbildet, muss mittlerweile jedoch als überholt angesehen werden, da inzwischen eine Vielzahl synthetisch hergestellter Verbindungen mit Si-Si-Doppelbindungen bekannt sind. Im Jahre 2004 wurde die erste Verbindung mit einer formalen Si-Si-Dreifachbindung strukturell charakterisiert.

Isotope [Bearbeiten]

Silicium hat eine Vielzahl bekannter Isotope, mit Massenzahlen zwischen 22 und 44. 28Si, das in der Natur am häuftigsten vorkommende Isotop mit einem Anteil von 92,23 %, 29Si (4,67 %) sowie 30Si (3,1 %) sind stabil. 32Si ist ein <

beeway 發表在 痞客邦 留言(0) 人氣()

1 2